

Forensic Analysis of the Nintendo

Wii Game Console

Peter Stewart

Department of Computer and Information Sciences

September 2010

Page | ii

Declaration

A thesis submitted to the Department of Computer and Information Sciences,

University of Strathclyde, in part fulfilment of the regulations for the degree of

Master of Science in Forensic Informatics.

I declare that, in accordance with University Regulation 20.1.20, this dissertation

embodies the results of my own work and that it has been composed by myself.

Following normal academic conventions, I have made due acknowledgement

to the work of others.

I give permission to the University of Strathclyde, Department of Computer and

Information Sciences, to provide copies of the dissertation, at cost, to those who

may in the future request a copy of the dissertation for private study or research.

I give permission to the University of Strathclyde, Department of Computer and

Information Sciences, to place a copy of the dissertation in a publicly available

electronic archive.

Yes [] No []

Signed _________________________________ Date __________

Student Number: 200957905

Page | iii

Abstract

Like other modern game consoles, the Nintendo Wii provides users with a

powerful networked device capable of performing many of the tasks carried

out by a conventional desktop personal computer. Unlike other modern game

consoles however, the Nintendo Wii utilises an internal NAND flash storage

device in lieu of a standard hard disk drive, and thus cannot be imaged in the

same manner as the Microsoft Xbox or Sony Playstation 3. The difficulties in

imaging the device are exacerbated by the tightly-controlled, proprietary

nature of the platform, and have led to forensic examiners being faced with the

choice of ignoring the Nintendo Wii completely, or performing a ―live

examination‖ and potentially destroying evidence.

Through a series of experiments, investigates the feasibility of a number of

hardware and software procedures designed to capture the raw data held by

the Nintendo Wii‘s NAND flash storage device so that conventional digital

forensic techniques may be applied to the console. In addition to the successful

capture of data, this report also describes a process by which the console can

be restored to a previously-captured state, reducing the risks associated with

performing a ―live examination‖. Also described is the analysis of the captured

NAND flash image, which has demonstrated the recovery of a partial history of

internet usage and sent ―Wii Message Board‖ communications – information

which was previously thought to be inaccessible by any other means.

Page | iv

Acknowledgements

I would like to thank Ian Ferguson, my project supervisor, for all of his assistance

and support throughout the various stages of this project.

I also wish to thank Bruce Ramsay of the Lothian and Borders Police Forensic

Computer Unit for his valuable insight into the hardware-based experiments

conducted during the project.

Page | v

Table of Contents

Declaration .. ii

Abstract ..iii

Acknowledgements .. iv

Table of Contents .. v

List of Figures ... ix

List of Tables ... x

Chapter 1 – Introduction .. 1

1.1 Rationale ... 1

1.2 Aims and Objectives ... 2

Chapter 2 – Overview of the Nintendo Wii ... 4

2.1 Hardware .. 5

2.1.1 NAND Flash Storage ... 6

2.1.2 Secure Digital Flash Memory Card Reader .. 7

2.1.3 The ―Broadway‖ Processor .. 8

2.1.4 The ―Hollywood‖ and ―Starlet‖ Processor Package 8

2.1.5 Motherboard Revisions .. 9

2.2 Software .. 12

2.2.1 IOS ... 12

2.2.2 Wii System Menu ... 13

2.2.3 Channels .. 14

2.3 General Operation .. 15

2.3.1 The Boot Process ... 16

Page | vi

2.3.2 Network Connectivity ... 18

2.3.3 Internet Browsing ... 20

2.3.4 Wii Message Board ... 21

Chapter 3 – Literature Review .. 23

3.1 Microsoft Xbox & Xbox 360 Forensics ... 23

3.2 Sony Playstation 3 Forensics ... 25

3.3 Nintendo Wii Forensics .. 27

Chapter 4 – Proposed NAND Flash Imaging Methods .. 31

4.1 Using Hardware.. 31

4.1.1 Joint Test Action Group (Boundary-Scan) .. 32

4.1.2 The Infectus2 NAND Flash Controller .. 32

4.2 Using Software.. 34

4.2.1 Linux Approach ... 34

4.2.2 Homebrew Software Approach ... 35

4.3 Evaluation of Proposed Methods.. 36

4.3.1 Potential for NAND Data Modification .. 37

4.3.2 Requirement of Specialist Skills or Tools ... 38

4.3.3 Robustness of Approach ... 40

4.4 Proposed NAND Flash Imaging Guidelines ... 41

Chapter 5 – Equipment and Experimental Methodology 43

5.1 Equipment .. 43

5.2 Experimental Methodology ... 45

Chapter 6 – Hardware-based Imaging Experiment .. 48

6.1 Preparation of the Infectus2 Chip .. 48

Page | vii

6.2 Imaging Procedure ... 51

6.3 Analysis of Experiment .. 56

6.3.1 Possible Causes of Failure .. 56

Chapter 7 – Software-based Imaging Experiments... 59

7.1 Exploiting Vulnerabilities in Wii System Software ... 59

7.1.1 The Twilight Hack ... 60

7.1.2 Bannerbomb .. 60

7.1.3 Smash Stack ... 61

7.1.4 Indiana Pwns .. 61

7.2 Using Linux ... 62

7.2.1 Preparation of Secure Digital Flash Memory Card 62

7.2.2 Imaging Procedure ... 66

7.2.3 Analysis of Experiment .. 68

7.3 Using Homebrew Software ... 69

7.3.1 Preparation of Secure Digital Flash Memory Card 69

7.3.2 Imaging Procedure ... 71

7.3.3 Analysis of Experiment .. 78

Chapter 8 – Restoration of an Acquired Image ... 80

8.1 Preparation for Restoration .. 81

8.2 Restoration Procedure .. 81

8.3 Analysis of Experiment .. 86

Chapter 9 – Data Analysis .. 87

9.1 Creation of Test Data .. 87

9.1.1 General Use ... 87

Page | viii

9.1.2 Internet Browsing ... 88

9.1.3 Exchange of Messages .. 88

9.2 Accessing the NAND flash file system .. 89

9.3 Analysis of Extracted Data ... 91

9.3.1 Web Browsing .. 92

9.3.2 Internet Bookmarks / Favourites.. 94

9.3.3 Saved Contacts .. 95

9.3.4 Received Messages.. 97

9.3.5 Recently Sent Messages .. 98

Chapter 10 – Conclusions and Future Work ... 100

10.1 Project Achievements .. 100

10.2 Difficulties Encountered .. 100

10.3 Future Work ... 101

Bibliography .. 103

Appendix A – Console Disassembly ... 108

Appendix B – NAND Flash Device Datasheets ... 115

Appendix C – The WiiTools Python Script Collection ... 116

Page | ix

List of Figures

Figure 2.1: Photograph of the "Hollywood" & "Broadway" Processors 9

Figure 2.2: Photograph of a "Type A" Motherboard .. 11

Figure 2.3: Photograph of a "Type B" Motherboard ... 11

Figure 4.1: Photograph of the Infectus2 PCB and USB Mini Connector 33

Figure 5.1: Diagram of a Tri-Wing Screw Head ... 44

Figure 5.2: Photograph of a 2GB Secure Digital flash memory card 45

Figure 6.1: The Infectus2 PCB, USB interface & ribbon cable 49

Figure 6.2: Prepared Infectus2 chip connected to the USB interface 50

Figure 6.3: Annotated NAND Flash Electrical Interface .. 52

Figure 6.4: Traced Electrical Pathways on a "Type A" Motherboard 53

Figure 6.5: Traced Electrical Pathways on a "Type B" Motherboard 54

Figure 6.6: Error message produced by amoxiflash ... 56

Figure 7.1: Pop-up dialog indicating the success of Bannerbomb exploit 66

Figure 7.2: Whiite Linux booting and login prompt .. 67

Figure 7.3: Results of BootMii installer compatibility tests .. 73

Figure 7.4: Wii System Menu updated after Homebrew Channel installation 74

Figure 7.5: The Homebrew Channel menu ... 75

Figure 7.6: BootMii NAND flash backup menu screens ... 76

Figure 7.7: BackupMii during the imaging process .. 77

Figure 7.8: BackupMii after completion of imaging process 77

Figure 8.1: The first screen shown by the RestoreMii application 82

Figure 8.2: The warning screen displayed by the RestoreMii application 83

Figure 8.3: Illustration of the differences between NAND flash device images 84

Figure 8.4: Confirmation of the success of the restoration procedure 84

Figure 8.5: Wii System Menu before (L) and after (R) the restoration process 85

Figure 9.1: Usage information for the wiinandfuse file system tool 91

Figure 9.2: Output of grep when searching for Internet Channel data 93

Page | x

Figure 9.3: Cookie data stored by the Internet Channel .. 93

Figure 9.4: Favourites data stored by the Internet Channel 95

Figure 9.5: Headers of the most recently sent Wii Message Board message 99

List of Tables

Table 2.1: NAND flash device divisions .. 6

Table 2.2: NAND Physical Layout .. 6

Table 2.3: Truncated history of Wii System Menu versions .. 14

Table 6.1: Mapping of Infectus2 pads to NAND Flash pins 52

Table 7.1: Compatibly of Wii software exploits ... 60

Table 7.2: Summary of BootMii controls ... 74

Table 9.1: Structure of Wii Address Book file .. 96

Table 9.2: Structure of Wii Friend List entries .. 96

Page | 1

Chapter 1 – Introduction

The primary aim of this project is to determine the feasibility of applying

conventional digital forensic techniques to the analysis of the Nintendo Wii

game console, which is typically treated as a complex embedded device or

ignored altogether by forensic examiners.

This report includes a description and explanation of:

 The Nintendo Wii hardware and software platform

 The current state of game console forensic analysis, including the

Nintendo Wii, Sony PlayStation 3 and Microsoft Xbox platforms

 Potential approaches to imaging the console‘s internal NAND flash

storage device

 Investigation and extraction of data from the Nintendo Wii NAND flash file

system

This chapter describes the rationale and motivation behind the project and

includes an overview of its set aims and objectives.

1.1 Rationale

Recent years have seen video game consoles evolve from highly-specialised

stand-alone devices into networked home entertainment hubs capable of

handling streaming music, video and internet traffic in addition to their

conventional game play use. This is especially true of the current generation of

consoles – the Microsoft Xbox 360, Sony PlayStation 3 and Nintendo Wii – all of

which provide users with permanent internal storage, message exchange

mechanisms, and the ability to browse the World Wide Web.

Page | 2

Game consoles are designed as closed systems with a heavily-vetted set of

approved software applications which greatly reduce the opportunities for

misuse. However in addition to these standard capabilities, a growing number of

hardware and software modifications can be exploited in order to allow the

execution of arbitrary unsigned code, and in some cases, the installation and

use of a non-native operating system. By combining the stability and flexibility of

the Linux kernel with the powerful graphics hardware which comprises a modern

game console, such non-native operating systems can turn game consoles into

extremely powerful, relatively low cost, general purpose computing devices with

an increasing relevance to digital forensic investigations.

Despite being the least powerful of the three current generation consoles, the

Nintendo Wii is the cheapest and arguably the most popular, having sold in

excess of 67 million units since its release in 2006 (1).

Taking into account the large volume of sales, there is a notable lack of

published information relating to the forensic analysis of the Nintendo Wii. It is

hoped that this project can provide a detailed explanation of the Nintendo Wii

hardware and software platform, its operation, and the methods by which it

can be exploited to reveal information to a forensic examiner; providing a

springboard for future research into the forensic analysis of the device.

1.2 Aims and Objectives

The primary aim of this project is to determine the feasibility of applying

conventional digital forensic techniques to the analysis of the Nintendo Wii

game console.

It is hoped that this aim will be accomplished through extensive research into

the current state of forensic analysis of the Nintendo Wii platform, aided by a

Page | 3

series of experiments designed to explore the internal NAND flash storage

device which is used by the Nintendo Wii in lieu of a standard hard disk drive.

Given the relatively broad aim outlined above, the following objectives are used

to judge the success of the project:

1. The development of a procedure to acquire a forensic image of the

Nintendo Wii internal NAND flash storage device

2. The development of a procedure to restore a previously captured forensic

image to the internal NAND flash storage device

3. The production of an intelligible representation of the Nintendo Wii NAND

flash file system

4. The analysis and extraction of data from the NAND flash file system which

would otherwise be inaccessible using the current ―live examination‖

methodology

Page | 4

Chapter 2 – Overview of the Nintendo Wii

First released across Europe, the Americas and Japan in late 2006, the Wii is

Nintendo‘s seventh-generation game console. The Wii is by far the least

powerful seventh-generation console, lacking the advanced graphics

hardware and disk-based storage of its rivals. However it is the cheapest and is

marketed toward a wider, more casual gaming demographic with an emphasis

placed on social interaction rather than cutting-edge graphics. As a result it is

arguably the best-selling console of its generation – having sold 67.45 million

units as of 31 December 2009 (1).

Nintendo have released very few details regarding the technical specification

of the Wii, though unofficial reports suggest that the console is built around an

updated version of Nintendo‘s sixth-generation GameCube platform, making

the Wii fully backward-compatible while being roughly twice as powerful as its

predecessor (2).

Due to Nintendo‘s reluctance to release technical data to the public, this

project is heavily reliant on information produced by the thriving ―homebrew‖

hardware and software hacking community which has grown around the Wii

platform1. Although the community was founded with the aims of exploring the

capabilities of the hardware and making the platform more accessible to

individual software developers, the obvious association with video game

copyright infringement has led Nintendo to go to great efforts to hamper its use

– periodically updating the Wii system software to fix vulnerabilities used by the

homebrew community to enable arbitrary code execution.

As a result of the cat-and-mouse game played out between Nintendo and the

homebrew community, the Nintendo Wii platform is still evolving, with system

1 WiiBrew Wiki. Available online: http://wiibrew.org/wiki/Main_Page

Page | 5

software updates being released every 6-12 months with the apparent aim of

blocking the execution of arbitrary unsigned code. This chapter aims to give an

overview of the current state of the Wii platform, detailing hardware and

software revisions which may help or hinder the forensic analysis of the device as

well as detailing the boot process and general operation of the console.

2.1 Hardware

The hardware which comprises the Nintendo Wii has undergone a number of

minor changes over its lifespan, the majority of which have been to the

secondary circuit board and chipset which control the console‘s optical disc

drive. It is likely that these hardware revisions were introduced as newer or

cheaper fabrication methods became available, however one notable effect is

that many third-party modification chips (commonly known as ―drive chips‖)

have become obsolete as the copy-protection measures built around the

optical disc drive are improved.

As ―drive chips‖ typically seek only to bypass copy-protection measures, they

are primarily associated with video game copyright infringement rather than the

homebrew software community, and do not come under the consideration of

this project.

This section of the report aims to detail the main hardware elements which allow

the Wii to operate, including the NAND flash storage device and the two main

processor packages. This is followed by a brief overview of the revisions made to

the console‘s motherboard, paying particular attention to the placement and

accessibility of the NAND storage device.

Page | 6

2.1.1 NAND Flash Storage

The single component most likely to be of interest to a forensic examiner is the

console‘s 512MiB NAND flash storage device which is used to system software

and settings, saved games, and software such as the ―Internet Channel‖ web

browser or Virtual Console games, which can be downloaded through

Nintendo‘s online shopping application, the Wii Shop Channel.

The NAND flash storage device is divided into 4096 Blocks, each of 8 Clusters.

Each Cluster is comprised of 8 Pages, while each Page consists of 2048 bytes of

data, followed by 64 bytes of error-correction and hashed message

authentication codes. These divisions are illustrated in Table 2.1, while the

physical layout of the NAND is detailed in Table 2.2.

Unit Description Length (excl. ECC)

Page 2048 bytes data + 64 bytes ECC / HMAC 2048 bytes (+ 64 bytes)

Cluster 8 * Page 16,384 bytes

Block 8 * Cluster 131,072 bytes

NAND 4096 * Block 536,870,912 bytes

Table 2.1: NAND flash device divisions

Location (Blocks) Description

0 Contains ―boot1‖

1-7 Contains ―boot2‖

8 Beginning of per-console unique data

8-4063 Encrypted file system data

4064-4096 Unencrypted file system metadata

Table 2.2: NAND Physical Layout

Page | 7

It is important to note that the majority of the data stored by the NAND flash

device is encrypted with a console-specific key. This means that the console-

specific encryption keys must first be extracted before data from the NAND flash

device can be made intelligible. This console-specific encryption of data also

has the effect of preventing the direct transferral of NAND file system data

between Wii consoles.

Although certain Toshiba NAND flash chips are reportedly supported by the Wii

system software NAND flash driver, the most commonly utilised chips appear to

be the Samsung K9F4G08U0B and Hynix HY27UF084G2M / HY27UG084G2M (3).

The typical electrical interface of a NAND flash chip can be seen later in the

report in Figure 6.3, while datasheets for the Samsung and Hynix NAND flash

chips are included in Appendix B.

2.1.2 Secure Digital Flash Memory Card Reader

In addition to the internal NAND flash storage ship, the Nintendo Wii is equipped

with a front-mounted Secure Digital flash memory card reader. Officially the

maximum storage capacity of a Secure Digital flash memory card is 2GB,

although Secure Digital High-Capacity cards (which are supported through a

Wii System Menu update) have a maximum storage capacity of 32GB.

The Secure Digital flash memory card reader can be used to load and save

console data, such as saved game files, Channels, pictures and video.

Page | 8

2.1.3 The “Broadway” Processor

The Nintendo Wii‘s central processing unit was designed and manufactured by

IBM, and based around a specially adapted implementation of IBM‘s Power

Architecture core.

Neither Nintendo nor IBM have been forthcoming in releasing technical details

relating to the Broadway processor, although in keeping with the theme of

backward compatibility, the Broadway processor essentially appears to be an

upgraded version of the ―Gekko‖ PowerPC processor used in the sixth-

generation Nintendo GameCube, albeit with a 20% reduction in energy

consumption (4).

The IBM-branded Broadway processor is located below the ―Hollywood‖

package on the console motherboard, and is pictured in Figure 2.1.

2.1.4 The “Hollywood” and “Starlet” Processor Package

The ―Hollywood‖ processor package was designed by ATi and functions

primarily as a graphics processing unit. However in addition to its graphics

capabilities, the Hollywood package also contains a full ARM9 core which has

been unofficially named ―Starlet‖ by the Wii homebrew community.

The Starlet processer manages many of the console‘s input/output functions, as

well as controlling the wireless networking, USB, and optical disc drive hardware.

This core also acts as a security controller, and is thought to contain hardware

implementations of the Advanced Encryption Standard and SHA-1

cryptographic hash function.

Page | 9

Figure 2.1: Photograph of the "Hollywood" & "Broadway" Processors

The Starlet core also contains an area of One-Time Programmable memory

which holds a number of console-specific encryption keys, including the NAND

AES key which is required before the data held on the NAND flash storage

device can be rendered intelligible (5).

2.1.5 Motherboard Revisions

As with the Wii‘s secondary circuit board and chipset, the console‘s

motherboard has also undergone a series of changes over its lifetime. The

majority of these changes involve minor shifting of components or re-routing of

electrical pathways and are inconsequential as far as the forensic analysis of the

device is concerned. With that in mind, this section sets out to detail only the

Page | 10

changes which affect the positioning and accessibility of the console‘s NAND

flash storage device.

The motherboard variants can be split into two broad groups based solely on

the layout of the NAND flash device. For the sake of simplicity these groups will

be referred to as ―Type A‖ and ―Type B‖ from this point onwards.

The ―Type A‖ motherboard variants appear in early model Wii consoles. While

there may be minor differences between certain ―Type A‖ revisions, it is

important to note that the area surrounding the NAND flash storage device is

unchanged.

Newer (including all black ―Limited Edition‖) model Wii consoles contain a

revised ―Type B‖ motherboard.

The main difference between ―Type A‖ and ―Type B‖ motherboards is the

orientation of the NAND flash storage device. This can be seen clearly by

comparing Figure 2.2 to Figure 2.3. In addition to the change in its orientation,

the electrical pathways surrounding the NAND flash device have been

significantly re-routed.

Page | 11

Figure 2.2: Photograph of a "Type A" Motherboard

Figure 2.3: Photograph of a "Type B" Motherboard

Page | 12

2.2 Software

The software executed by the Nintendo Wii can be split into three broad

categories:

 IOS

 The Wii System Menu

 Channels

Each of these categories of software run at different levels and performs varying

functions. Briefly, IOS runs as a low-level operating system (similar to firmware),

the Wii System Menu functions as a user-facing operating system, and Channels

run at the application level.

This section contains a detailed examination of the categories of software likely

to be found on the Nintendo Wii.

2.2.1 IOS

The term ―IOS‖ refers to Nintendo‘s proprietary embedded operating system

which runs on the Hollywood package‘s Starlet core and provides the

input/output services that allow the Broadway processor and Wii software

applications to access low-level functions and system devices (6).

The design of IOS is somewhat unconventional in that multiple versions are

stored within the NAND file system, and there is no single definitive IOS instance.

Many games and applications supply and use their own versions of IOS, which

are stored in what may be termed ―slots‖ in the NAND file system.

Page | 13

Although multiple versions of IOS are stored on a console only one IOS can be

running at any given time. The dormant IOS versions are not aware of each

other, and can be modified or removed with few repercussions so long as they

are not called upon by the Wii System Menu.

2.2.2 Wii System Menu

The Wii System Menu is pre-installed on every new Wii console and provides a

graphical user interface which allows the user to launch games and

applications, modify system settings, and perform basic functionality such as re-

booting the console and ejecting discs from the optical drive. When the console

is booted the Wii System Menu is responsible for displaying a warning message

and prompting the user for input before continuing to boot.

The Wii System Menu has gone through a number of iterations in the years since

the console was first launched, with updates being delivered over the internet or

occasionally accompanying a game on an optical disc. The majority of these

updates introduce new features and bug fixes, although recent Wii System

Menu updates have had the apparent aim of removing homebrew software

and many of the IOS exploits used by the homebrew community (7) (8).

While it is not possible for Nintendo to force pre-existing console owners to install

updated versions of the Wii System Menu, users who choose not to install

updates may find that new games fail to run, or that certain online features such

as the Wii Shop Channel become unavailable.

Table 2.3 shows a truncated history of Wii System Menu updates which have had

adverse effects on the use of homebrew software, thus potentially reducing the

options available to a forensic examiner when presented with a Wii console.

Page | 14

Version Release Date Changelog

1.0
19 November,

2006
Shipped with early Wii consoles

2.0
19 November,

2006

Enabled downloadable System Menu updates, Increased support

for SD-cards

3.3
17 June,

2008
First attempt to block the ―Twilight Hack‖

3.4
17 November,

2008
Second attempt to block the ―Twilight Hack‖

4.0
25 March,

2009

Permanently blocked the ―Twilight Hack‖, Introduced the ―SD Card

Menu‖

4.2
28 September,

2009

Blocked the ―Bannerbomb v.1‖ hack, Removed customised

versions of ―boot2‖

4.3
21 June,

2010

Blocked that ―Bannerbomb v.2‖ hack, Removed homebrew

software installed as IOS

Table 2.3: Truncated history of Wii System Menu versions

2.2.3 Channels

Aside from games, the Nintendo Wii has the ability to run a wide range of

applications, known as Channels.

A number of Channels are shipped with each new console alongside the Wii

System Menu. These include:

 the Mii Channel, which allows the creation and limited sharing of user-

generated avatars

 the Photo Channel, which enables JPEG and MJPEG images and videos

stored on an SD card to be displayed on-screen

 the Wii Shop Channel is an online shop which allows users to purchase

and download new content such as games and additional Channels, for

example, the Internet Channel and BBC iPlayer Channel, which are

downloadable at no cost

Page | 15

 the Forecast Channel downloads information about weather reports and

forecasts and displays it to the user

 the News Channel functions in the same manner as the Forecast Channel,

downloading and displaying news headlines from agencies such as the

Associated Press or Agence France-Presse depending on the

geographical location of the console

2.3 General Operation

Before it can be of use the Nintendo Wii must be physically connected to a

mains power supply and audio/video output – typically a television. The device

can be controlled with a Nintendo GameCube controller which can be

physically connected to one of the circular ports on the top of the console, but

is most commonly controlled with the wireless Wii Remote, also known as a

―Wiimote‖. The position of the Wiimote is calculated relative to a sensor bar

which is generally placed above or below the display, allowing the console to

accurately trace the movement of the Wiimote.

As the Wii was designed to encourage more social game playing activities, it

allows the creation of avatars, known as ―Miis‖, which can be used to represent

different users within the system.

In addition to the features commonly associated with network connectivity, the

console also offers a limited picture viewing application, an RSS-type news

reader, and an online shop which allows the purchase and installation of further

applications, known as ―Channels‖.

This section details the general operation of the console, starting with the boot

process before continuing to explore the operation and features believed most

likely to be of interest to a forensic examiner.

Page | 16

2.3.1 The Boot Process

The process of booting the Nintendo Wii requires a chain of three separate

bootloaders before the file system held by the NAND flash storage device can

be read. This section provides an overview of each stage of the bootloader

chain and describes the hardware and software components utilised

throughout the process.

Although understanding the boot process may seem unrelated to the

acquisition of data from the NAND flash storage device, it is very important in

understanding how software is executed on the console.

boot0

The first stage of the bootloader chain is known as boot0 and is executed upon

the console being powered-up. When the power button on the front of the

console is pressed the Starlet processor is powered-on.

Starlet contains instructions to read the first 48 pages of the NAND flash storage

device, decrypt them with a fixed AES key, hash the decrypted pages with SHA-

1, and compare the hash to a value stored within a One-Time Programmable

area within the Starlet core. If the hash values do not match, the console will

halt and refuse to boot. Otherwise, the bootloader chain continues to the next

stage.

Page | 17

boot1

The second-stage bootloader is known as boot1 and is stored in the first 48

pages of the NAND flash device which were previously extracted and verified

by boot0.

The boot1 code is run entirely from Starlet‘s on-die memory and initialises the

external DDR3 memory before proceeding to read from blocks 1-7 of the NAND

flash storage device. Once read, this data is decrypted and RSA verification is

performed against a stored certificate. If the RSA verification procedure is a

success, the code is loaded into external memory as the third-stage bootloader.

If verification fails, the process halts and the console refuses to boot.

It is at the RSA verification stage that an exploitable bug first appeared in the

boot process. Due to a bug involving the C programming language‘s strncmp

function and its poor handling of NULL bytes in the RSA certificate hash, it

became computationally feasible to force a SHA-1 hash collision which

effectively bypassed the RSA verification procedure and allowed the execution

of arbitrary code in the third-stage bootloader (9). This bug was fixed sometime

in 2008, meaning that Wii consoles manufactured for sale after that time are

unlikely to allow the modification of the third-stage bootloader.

boot2

The third-stage of the bootloader chain is termed boot2 and is primarily

responsible for retrieving the Wii System Menu code from the NAND file system

and loading it into memory.

After retrieving the Wii System Menu code, boot2 reads its headers to determine

which particular IOS the Wii System Menu is expecting and re-loads itself. At this

point the Wii System Menu is loaded into external memory and the Broadway

processor is powered-on.

Page | 18

The Wii System Menu

Although this is the final stage of the boot process, it is the first that is actually

visible to the user as the entire bootloader chain up to the completion of boot2

takes place before the console outputs anything to the display.

The first thing to be displayed is a warning screen which prompts the user for

input before continuing. At this point, the Wii System Menu performs a check of

the full NAND file system in order to determine which Channels are installed, and

also checks whether or not a disc is present in the optical disc drive.

Upon the selection of a Channel or content from the optical disc drive the Wii

System Menu passes control to the IOS running on Starlet which decrypts,

verifies, and loads the appropriate Channel code into memory before finally re-

booting the Broadway processor, which executes the selection application.

2.3.2 Network Connectivity

The Nintendo Wii ships with a built-in 802.11b/g wireless networking module

although a USB-to-Ethernet adaptor is available as an optional accessory. Once

the console has established a connection to the internet a number of services

become available to the user.

Nintendo Wi-Fi Connection

One such service is an online gaming network known as Nintendo Wi-Fi

Connection. The Nintendo Wi-Fi Connection is designed to allow free online play

for compatible Wii and Nintendo DS games. Although the Nintendo Wi-Fi

Connection service is accessible to anyone with an internet-connected Wii or

Page | 19

DS console, Nintendo have introduced an authentication system which requires

users to exchange and mutually register ―friend codes‖ before certain

communication and game play features become available.

These ―friend codes‖ take the form of a twelve digit code generated from

identifiers unique to the user‘s copy of the game and the Nintendo Wi-Fi

Connection ID of their Wii console. Although some games can be played online

without one, a ―friend code‖ is required in order to play with a specific person.

The Nintendo Wi-Fi Connection has not been included within the scope of this

project however a similar authentication system forms part of Nintendo‘s

proprietary messaging system, the Wii Message Board, which is explored later in

this chapter.

WiiConnect24

The WiiConnect24 system is used to allow the console to receive content via an

internet connection. It is enabled by default, but can be turned off through the

Wii system software. Examples of content delivered through the WiiConnect24

system include Wii Message Board messages and emails, and notification of

updates to game, channel and system software.

One interesting aspect of WiiConnect24 is that it has the ability to utilise the

Starlet processor to allow a network connection to be maintained while the

console is in stand-by mode. This stand-by connection mode requires

WiiConnect24 to be enabled in order to function, but can be disabled

separately.

When examining a Wii console which appears to be turned off, it is important to

note the colour of the LED contained within the power button on the front of the

console. A red LED indicates that the stand-by connection is off, while a yellow

Page | 20

LED indicates that the stand-by connection is functioning. Another possible

indication is a neon-blue glow emitted from the edges of the optical disc drive.

Depending on system software settings, this light may pulsate to indicate that

new data has been received while the console is in stand-by mode. However as

this notification may be turned off completely, it is important to note the colour

of the power LED before unplugging the console.

2.3.3 Internet Browsing

In April 2007 the full edition of a specially developed version of the Opera 9 web

browser was released for download through the Wii Shop Channel (10). Known

as the Internet Channel it was sold for 500 ―Wii points‖ until September 2009,

when it was updated and made available as a free download in the Wii Shop

Channel.

Although the Internet Channel is now available at no cost, it is not presently

distributed with new Wii consoles and is not guaranteed to be installed on any

given device.

It is unclear as to whether or not the Internet Channel records a history of visited

web pages. No option exists to allow the user to clear records of browsing

history, although there is an option to remove internet cookies suggesting that

session cookies are kept which may provide an indication of user behaviour

given access to the NAND flash storage device data.

Another quirk of the Internet Channel is that although it allows the user to save

visited web pages as ―favourites‖, the URL is not displayed when browsing the

―favourites‖ list. This is possibly due to the Internet Channel interface being

designed for viewing on a television screen rather than a computer monitor, as

Page | 21

thumbnail images of the saved web page are displayed along with a title

instead.

2.3.4 Wii Message Board

The Wii Message Board is a software application which allows users to leave text

or picture messages for other local console users and, in conjunction with

WiiConnect24, allows the user to exchange email-like messages with other pre-

approved consoles and standard email addresses.

In keeping with Nintendo‘s ―friend code‖ concept, content from the Wii

Message Board can only be exchanged with an email address or another Wii

console after it has been mutually authenticated by the Wii Message Board

Address Book.

At a basic level the Address Book is a list of 100 records, with each record

containing a nickname and single contact address (either email or a 16-digit

console identifier). When a new entry is added to the Address Book, an

automated message is sent to the contact address explaining that the user of a

Wii console with a specified 16-digit identifier wishes to exchange messages,

and asks that the recipient reply to the automated message to confirm that

they are known to the console user. This is all that is required in order to register a

contact with a standard email address, however in order to register another Wii

console the process must be performed on both users‘ consoles.

This mutual authentication procedure could potentially be of use to a forensic

examiner as it requires a degree of prior contact between the console user and

the contacts stored in the Address Book.

Once a contact is registered, messages can be exchanged and will appear in

the Wii Message Board application as a flashing envelope icon. Using the

Page | 22

calendar feature of the Wii Message Board, it is possible to view envelope icons

representing messages which were received any given date. While this may be

impractical if there are a wide range of dates to be checked, it should be

adequate if an examiner has particular dates in mind when conducting an

examination.

While this approach is viable for uncovering received messages, it does not

appear that the Wii Message Board application maintains records of outgoing

messages, other than a note that one or more messages have been sent to a

contact on a particular date.

Although it is possible to exchange messages with picture attachments between

Wii consoles, the Wii Message Board application does not appear to support the

exchange of pictures when one participant is using a standard email address.

Another important function of the Wii Message Board is to record and display

statistics relating to the usage history of the console. Examples of this automated

logging include the recipients of sent messages, as noted above, time spent

using each Channel or game (e.g. 23 minutes use of the Internet Channel), and

the total playing time for that day. While these statistics do not note the time of

day when the actions took place, these messages cannot be deleted by a user

and may be instrumental in establishing a pattern of use for the device.

Page | 23

Chapter 3 – Literature Review

This chapter aims to provide an overview of the current state of the field of

game console forensic analysis, detailing current best practice and newly

proposed approaches to the forensic analysis of the Microsoft Xbox and Xbox

360, Sony PlayStation 3, and Nintendo Wii platforms.

3.1 Microsoft Xbox & Xbox 360 Forensics

The Microsoft Xbox 360 was released in late 2005 and heralded the arrival of the

current generation of network-capable, multi-function game consoles. It

features a built-in Ethernet interface, although an 802.11b/g wireless network

adapter is available as an option. Depending on the model, the console is likely

to make use of a removable hard disk drive contained within a proprietary

enclosure.

An extensive search of digital forensics journals and conference proceedings

uncovered only a single peer-reviewed paper directly related to the forensic

analysis of the Xbox 360 (11). The paper by Xynos et al. revisits and updates

much of the previously published work relating to the original Microsoft Xbox

console and presents a detailed examination of the Xbox 360 file system and

networking capabilities.

Although contained within a proprietary enclosure, it appears that the hard disk

drive can be removed from the console and connected to a PC via a standard

SATA interface (12).

The Xbox 360 hard disk drive appears to use a modified version of the standard

FAT file-system, and can be explored using a free, but closed-source, software

Page | 24

application or a proposed toolkit developed with forensic analysis in mind (13)

(14).

Although it appears that there is a relative lack of published research into the

forensic analysis of the Xbox 360 this is not the case for its predecessor – the

Microsoft Xbox.

The original Xbox was released in late 2001 and finally discontinued in 2006 after

the release of the Xbox 360. Unusually for its time, the Xbox shipped with an

internal hard drive and Ethernet adaptor. As a result the platform quickly

attracted the attention of hobbyists who set to work bypassing its security

restrictions; essentially turning the Xbox into a low-end personal computer (15)

(16).

Although the Xbox uses a standard IDE hard disk drive it is ―locked‖ by a little-

used protection scheme included in the ATA specification, and utilises a

cryptographically generated password created from elements of the console

and hard disk drive model and serial numbers (17).

Fortunately the act of booting the Xbox ―unlocks‖ the hard drive, allowing the

IDE cable to be replaced with a hardware write-blocker in order to create a

forensic image of the drive which can be then be taken away for examination

(18).

Memory analysis is commonly overlooked when dealing with the forensic

examination of game consoles. One published approach involves exploiting a

buffer overflow vulnerability in a saved game file in order to execute code

which captures an image of virtual memory (19). Although the technique is in

need of refinement, it is possible that it can modified to capture a physical

storage device and generalised to work on a wide variety of embedded

systems.

Page | 25

3.2 Sony Playstation 3 Forensics

The Sony PlayStation 3 is the most technically advanced of the three current-

generation consoles. Though it has undergone several changes and updates

since its initial release in late 2006 each model contains an Ethernet, and in

some cases, 802.11b/g network adaptor and a 2.5‖ SATA hard disk drive which

can be upgraded by the user.

One unique feature of the PlayStation 3 was option which allowed users to

partition the hard disk drive in order to install a secondary – typically Linux-based

– operating system on the console without the need for unauthorised

modifications. This ―OtherOS‖ was subject to restrictions placed on partition size

and lacked direct access to certain hardware components, however the

officially-supported feature proved to be popular with hobbyists and those

wishing to harness the power of the multi-core Cell processor on which the

PlayStation 3 is built. It can be argued that the ―OtherOS‖ increased the scope

for misuse of the console by effectively turning it into a general-purpose Linux

desktop personal computer, but alternatively it has been credited with helping

to maintain the security of the platform, as providing an officially sanctioned

method of installing a Linux-based operating system removes one of the primary

motivators for hardware and software hackers.

This feature was notably absent from the re-designed ―Slim‖ model PlayStation 3

which was released in late 2009, and was disabled on all PlayStation 3 consoles

by a downloadable firmware update released in April 2010 (20).

As with the Microsoft Xbox 360, there appears to be a lack of published material

relating to the forensic analysis of the PlayStation 3, although a mock

investigation involving two suspects trading illicit data over the internet using

PlayStation 3 consoles was the focus of the 2009 Digital Forensics Research

Page | 26

Workshop Challenge, leading to a number of challenge submission reports

being made available on the DFRWS website2.

Although the PlayStation 3 hard disk drive can be removed from the console

and connected to a write-blocker for imaging, the security measures put in

place by Sony result in the data contained on hard disk drive being encrypted

with a console-specific encryption key. This security measure also means that a

hard disk drive taken from one PlayStation 3 console will fail to function when an

attempt is made to use it in a second console (21). It is worth noting that this

encryption applies only to the main PlayStation 3 system software partition and,

as a result, any ―OtherOS‖ partition which may exist can be carved from the

hard disk drive image and examined with standard forensic investigation

software (22) (23).

Due to the encryption of the main PlayStation 3 system software partition, an

investigation method has been proposed which combines conventional image-

based forensic investigation with ―live examination‖ by removing and imaging

the console‘s hard disk drive before copying the image to a new hard disk drive

which is then inserted into the console. This hybrid approach allows an

investigator to obtain potential evidence from the encrypted partition by

booting the suspect console and viewing data through the PlayStation 3 system

software without having to risk the destruction or inadvertent modification of the

data. (21).

While the security measures put in place by Sony appear to have held firm since

the initial release of the console in late 2006, there are signs that cracks are

beginning to appear, potentially heralding the development of a new

homebrew software community around the PlayStation 3 platform. It is

interesting to note that the ―OtherOS‖ feature was disabled by downloadable

2 DFRWS Challenge 2009. Available online: http://www.dfrws.org/2009/challenge/index.shtml

Page | 27

firmware update shortly after the publication of an exploit thought to provide

access to the console hypervisor through some facet of the ―OtherOS‖ feature

(24).

Another potential PlayStation 3 exploit was reportedly made available in August

2010, utilising a USB ―dongle‖ in order to allow the execution of unsigned code

(25). While independent confirmation of this exploit is unavailable, the ability to

execute arbitrary unsigned code on the console could potentially allow the

development of a forensic application capable of capturing an intelligible copy

of the data contained on the encrypted system partition.

3.3 Nintendo Wii Forensics

Despite selling in excess of 67 million units, it appears that only one peer-

reviewed paper covering the forensic analysis of the Nintendo Wii has been

published: Benjamin Turnbull‘s ―Forensic Investigation of the Nintendo Wii: A First

Glance‖ (26).

In his paper, Turnbull argues that the Wii‘s relative lack of power and storage

capacity make it the least attractive target for misuse amongst the current

generation of game consoles. Additionally, the lack of disk-based storage

presents a problem in that traditional methods of evidence acquisition are not

applicable. These factors, coupled with the misconception that game consoles

are secondary sources of evidence may lead an examiner to conclude that the

Nintendo Wii is not worth the trouble of developing new investigatory

techniques.

The lack of a hard drive does not necessarily mean that there is no data to be

recovered from the console. The Nintendo Wii includes a flash memory card

reader/writer which can be used to transfer saved games and user data to a

Page | 28

Secure Digital flash memory card. Additionally the internal NAND flash device

presumably contains data created by the automated usage logging feature, as

well as interactions with the Internet Channel and Wii Message Board

applications.

While it does not seem to be possible to remove the automated logging

messages through the standard Wii system software, Turnbull suggests that

homebrew software such as a non-native operating system may bypass the

logging feature entirely.

Due to the difficulty of accessing the data stored on the Nintendo Wii‘s internal

NAND flash device in a forensically-sound manner, Turnbull proposes a

methodology for the ―live examination‖ of a suspect console, with the

examiner‘s actions recorded by a video camera or screen capture device.

While a ―live examination‖ procedure is not ideal due to the inherent risk of

modifying or destroying potential evidence, the good practice guidelines for

handling computer-based electronic evidence set out by the Association of

Chief Police Officers do allow for such procedures, but only if absolutely

necessary and all changes made can be explained and accounted for by the

examiner (27).

Turnbull‘s contains a full walkthrough of the proposed ―live examination‖

process, including the examination of the Wii System Menu version, the date

and time settings, network settings and the status of automated usage logging

and Wii Message Board messages. The Mii Channel application is also

highlighted by Turnbull as a potential area of interest to an examiner. The Mii

Channel contains any user-created avatars, and may provide an indication of

the number of people who had regular interactions with the console.

Concerning the lack of recorded web browser history data in the main system

software Turnbull theorises that this may be due to the lack of spare capacity on

Page | 29

the internal NAND flash storage device. He also notes that there is no method of

examining the true location of a web page saved as a ―Favourite‖ without

following it. As a workaround, he suggests the use of a packet sniffing device on

the network, the records of which can then be examined to determine the true

location of the saved resource.

Turnbull‘s paper also illustrates the point that game consoles can no longer be

viewed as static platforms. The inclusion of a network connection means that

system software can be forcibly updated by the vendor, either to add new

functionality or to patch security flaws which could be exploited to execute

unsigned code. This point is illustrated by the growing availability of the Internet

Channel application, which required once an extra payment but is now

available as a free download through the Wii Shop Channel.

While investigating the possibilities for hardware-based imaging of the internal

NAND flash storage device, an approach was uncovered which uses the Joint

Test Action Group (JTAG) test port to directly access and image the memory

chips of an embedded device, writing the data to an analysis workstation via a

parallel port (28). While the procedure as set out in the paper is not specifically

tailored to the Nintendo Wii, it is implied by the authors that it could be adapted

to function on any embedded system with an accessible JTAG port.

Unfortunately however, preliminary research undertaken as part of the project

indicated that no such test port is accessible on the Nintendo Wii, leading to the

abandonment of this proposal.

An alternative hardware-based imaging approach does away with the need for

a JTAG port by attaching an external NAND flash controller to the console and

using it to read data directly from the internal NAND flash storage device (29).

This technique was originally developed by a member of the Nintendo Wii

hardware hacking community who was seeking to develop a method to repair

corrupted Wii NAND flash file systems, but may be formalised to produce a

Page | 30

forensically-sound process for acquiring an image of the internal NAND flash

storage device.

It was decided during the early stages of the project that if such a process of

capturing an image of the internal NAND flash storage device proved

successful, a method of restoring a previously captured NAND flash device

image would be sought. If such a restoration procedure was developed, it may

result in the a ―hybrid‖ investigative methodology similar to that proposed by

Conrad et al. for the Sony PlayStation 3, where Turnbull‘s ―live examination‖

procedure can be carried out on a suspect console, which can later be

restored to its ―seized‖ condition if necessary.

Page | 31

Chapter 4 – Proposed NAND Flash Imaging Methods

One of the main objectives of this project is to determine whether or not it is

feasible to create a block-for-block replica of the data stored on the Nintendo

Wii‘s internal NAND flash storage device. The Nintendo Wii differs from its

seventh-generation competitors in its lack of a removable primary storage

device. Unlike the Microsoft Xbox 360 and Sony PlayStation 3 which both utilise

standard SATA hard disk drives, the Wii makes use of a NAND flash storage

device which is soldered to its motherboard. This lack of removable primary

storage leaves a forensic examiner with the choice to either treat the Nintendo

Wii as a complicated embedded device, or to develop a novel method of

acquiring a forensic image of the data stored within the console.

This chapter of the report introduces three proposed methods of creating a

forensically-sound copy of the data held by the NAND flash storage device, one

involving the use of hardware and disassembly of the console, and two which

run entirely in software and require no hardware modifications whatsoever.

4.1 Using Hardware

As it was believed that software-based approaches to imaging the Nintendo Wii

internal NAND flash storage device are typically reliant on flaws in the Wii System

Menu and IOS, a decision was taken to first attempt to develop a hardware-

based imaging method which was presumed to be more robust when faced

with Wii System Menu security updates.

This section describes the pair of proposed hardware-based approaches to

accessing the data stored by the internal NAND flash device. The first involving

the low-level manipulation of data buses using a JTAG test port, while the

second operated at a higher level, utilising an external NAND flash controller.

Page | 32

4.1.1 Joint Test Action Group (Boundary-Scan)

The Joint Test Action Group standard, also known as boundary-scan, was

defined in 2001 and provides an extra port or set of electrical pads which can

be used to perform various testing and debugging functions on electronic

components and embedded software applications (30). While boundary-scan is

typically of most use during development and test cycles, many consumer

electronic items ship with JTAG-enabled Printed Circuit Boards left intact, though

not usually directly accessible to the end user.

The possibility of using JTAG to manipulate the data buses associated with the

Nintendo Wii‘s NAND flash storage device was first raised during early discussions

between the author and project supervisor. It appeared that the approach set

out by Breeuwsma (28) to image the SDRAM chips of embedded devices could

potentially be adapted to function on the Nintendo Wii console however, as

early research indicated that the Nintendo Wii motherboard was not JTAG-

enabled, this proposal was discarded.

4.1.2 The Infectus2 NAND Flash Controller

As it became apparent that JTAG access to the NAND flash storage device was

not feasible, attention was shifted to finding a suitable NAND flash controller

which would allow access to the NAND flash storage device in situ.

The Infectus2 external NAND flash controller (Figure 4.1) was originally

developed and marketed as a universal game console modification chip (31). It

features a fully-programmable core and Universal Serial Bus interface for

communication with a standard personal computer.

Page | 33

Figure 4.1: Photograph of the Infectus2 PCB and USB Mini Connector

Due primarily to their flexibility the Infectus and its successor the Infectus2 are

commonly used and well supported by the Nintendo Wii homebrew and wider

game console hacking communities. This support extends beyond the Infectus

hardware itself to the software applications which can be used to reprogram

and operate the chip (29).

It was proposed that an Infectus2 chip operating as an external NAND flash

controller be attached to the NAND flash storage device mounted on the

Nintendo Wii motherboard and, through software running on a desktop personal

computer, instructed to read data directly from the internal NAND flash device

which could then be passed to the desktop computer via USB connection.

Page | 34

4.2 Using Software

While it was presumed that an imaging process utilising an external NAND flash

controller was more likely to provide an exact copy of the data stored by the

console‘s internal NAND flash device, the identification of a large number of

potential difficulties which may have arisen during the process resulted in the

exploration of software imaging methods which could be applied without the

need for specialist skills and equipment.

The first software approach to be proposed involved the use of a specially

adapted Linux distribution, while the second made use of software developed

by the Wii homebrew community.

Although only one of these approaches was specifically labelled as homebrew

software, it should be noted that in order to execute arbitrary code, either the

Wii System Menu or IOS must first be exploited to allow these software

applications to be loaded into memory. A more detailed examination of the

publicly available exploits for Nintendo system software vulnerabilities can be

found on page 59.

4.2.1 Linux Approach

Since its initial release in 1991, operating systems based around the Linux kernel

have been written and adapted to operate on a multitude of different

processor architectures and embedded devices. As the hardware used by

game consoles evolved to the point that it was almost indistinguishable from a

standard desktop personal computer, it was only a matter of time before an

attempt was made to port the Linux kernel to these relatively cheap, powerful

computing devices.

Page | 35

In addition to the homebrew software community, the Nintendo Wii also sports

an active Linux development community which has its roots in the Wii‘s

predecessor, the Nintendo GameCube3.

The main achievement of the Wii and GameCube Linux communities is the

release of full, stable implementation of a Linux operating system. Based around

a modified kernel image and the Debian Lenny file system, Whiite Linux is

capable of running entirely from an SD card and system memory in a similar

manner to a standard live-cd environment (32).

While the exact level of access provided by Whiite Linux to the low-level

hardware contained in the Wii was unknown, it was presumed that read access

to the NAND flash storage device would allow the use of standard Linux-based

disk imaging applications such as dd and netcat, negating the need for the

development of special-purpose imaging software.

4.2.2 Homebrew Software Approach

As part of an effort to simplify the installation and use of homebrew software on

the Nintendo Wii, a group of developers known colloquially as ―Team Twiizers‖

have created and released an application called ―BootMii‖ which acts as a

customised bootloader and is designed to replace boot2, allowing full control of

the Wii hardware without interference from the Wii System Menu (33).

As the majority of the software developed by the homebrew community is

unauthorised and not supported by Nintendo, the creators of BootMii advise

homebrew software users to create a full back-up copy of the data stored by

their console‘s NAND flash device to be used in case of system failure (caused

3 GameCube Linux Wiki. Available online: http://www.gc-linux.org/wiki/Main_Page

Page | 36

either by an official Nintendo Wii System Menu update or by poorly coded

homebrew software). In order to ease this process of backing-up and restoring

data, the BootMii software package contains two data imaging applications

known as ―BackupMii‖ and ―RestoreMii‖ respectively.

Research conducted during the early stages of project led to the conclusion

that the image created by the BackupMii application could be considered to

be a full block-for-block copy (including Error-Correcting Code) of the data

stored by the NAND flash device. As the NAND flash storage device is

encrypted, so the resulting image would also be encrypted. Unlike the proposed

Whiite Linux approach however, the BackupMii application also has the ability

to extract the console-specific encryption keys from the One-Time

Programmable area of the Starlet processor. It was presumed that the

knowledge of these encryption keys would allow the data contained in the

NAND flash image to be made intelligible, potentially allowing access to the

contents of the underlying file system.

The RestoreMii application may be dismissed as a secondary concern, but the

demonstration of a method of restoring a captured NAND flash image to the

console may give a forensic examiner the confidence to perform a full ―live

examination‖ without having to be overly concerned about the destruction of

potential evidence.

4.3 Evaluation of Proposed Methods

This section examines the advantages and disadvantages of each of the

proposed imaging methods described above. Issues which could potentially

reduce the integrity or feasibility of the proposed approaches are explored

along with possible mitigating factors and solutions.

Page | 37

4.3.1 Potential for NAND Data Modification

It was presumed that the use of an external NAND flash programmer chip such

as the Infectus2 would provide the most accurate image of the state of the

internal NAND flash storage device as it was at the time it came into the

possession of the examiner. Similarly, it was presumed that the proposed Whiite

Linux approach also had the potential to create an accurate image of the

NAND flash storage device although as with a standard ―live imaging‖

technique, it was thought likely that the data stored by the internal NAND flash

device would be altered by the mere act of booting the console in order to

exploit the Wii System Menu or IOS and load the Linux environment into memory.

While the Whiite Linux approach would be run from system memory and a

Secure Digital flash memory card, the BootMii application package must be

installed on the target console before BackupMii can copy the data held by the

NAND flash storage device. Unlike the Whiite Linux approach which was thought

likely to make changes only to the daily use and playing time statistics tracked

by the console, the fact that BootMii requires installation to the internal NAND

flash storage device meant that there exists a potential to overwrite data which

may have been of value to an investigation.

While relying on an imaging method which made changes to the data being

collected was far from ideal, a number of ways of reducing and quantifying any

changes were proposed.

The impact of changes made by the exploitation of Wii system software could

be reduced by following Turnbull‘s suggestion of not beginning an analysis of

the console until it had been turned off and in the possession of the examiner for

at least 24 hours, as this would isolate the recording of the examiner‘s actions in

a new ―day‖ rather than potentially modifying valid records of user actions.

Page | 38

Although care must be taken to avoid corrupting the automated logging data

associated with user actions, in cases involving older consoles it is possible to

predict with near certainty the location of changes which would be made to

the NAND flash data. As the BootMii package was designed as a replacement

for the boot2 stage of the bootloader chain, it attempts to copy itself to blocks

1-7 of the NAND flash storage device, where it would automatically be loaded

by boot1. The boot2 data is not accessible to the user during normal console

use and is only ever consulted by boot1 during the console start-up process.

With this in mind, it is advised that blocks 1-7 of the acquired image be kept

outside of the scope of any investigation, although as these blocks are reserved

for use by the bootloader chain the effects of this restriction should be minimal.

It must be noted however that in most consoles manufactured since 2008, it is

not currently possible to install the BootMii package as a boot2 replacement.

This is due to a hard-coded update which fixed the RSA certificate hash-collision

bug which existed in early versions of boot1 and allowed arbitrary modification

of boot2. As a result of this update the BootMii package should detect that

boot2 cannot safely be modified, and instead install itself as an IOS in an unused

slot. During installation the BootMii IOS will be placed in the first empty IOS slot,

counting down from 254. The result of this is that BootMii IOS should typically be

installed as IOS 254 however future Wii System Menu updates by Nintendo have

the potential to fill arbitrary IOS slots and possibly alter the behaviour of the

BootMii installation package.

4.3.2 Requirement of Specialist Skills or Tools

The main advantage of the proposed software-based imaging methods was

thought to be that no specialist skills or tools were required in order to acquire an

accurate copy of the data stored by the internal NAND flash device. It was

Page | 39

presumed that a Linux environment with access to the NAND flash device would

also have access to the console‘s wireless network adaptor, allowing any

captured image to be passed to a remote host via netcat or similar

application. The BackupMii application requires only that an SD flash memory

card with enough free space be inserted into the card reader on the front of

the console. The back-up copy of the internal NAND flash memory should be

written to the SD card and later be transferred to a standard desktop PC for

analysis.

The same presumption cannot be made for the hardware-based approaches

proposed above. External NAND flash controllers are highly specialised pieces of

hardware, and may not be easily available. The Infectus2 chip used in this

project was purchased over the internet and imported from North America, as

very few of these chips appeared to be available for sale in the United

Kingdom. Although other methods of reading NAND flash storage chips exist,

the Infectus2 was chosen due to two main factors. Firstly because of its support

for accessing NAND flash chips in situ, removing the need to de-solder and

remount the chip in a TSOP-style adaptor, and secondly because the Infectus

and Infectus2 chipsets are widely supported in the Wii homebrew and wider

game console hacking communities.

Before the Infectus2 chip could be used a number of leads and a momentary

push-button switch had to be soldered to the correct pads on the Infectus2

Printed Circuit Board. These pads are large enough that they should present no

difficulties to any person with a small amount of previous soldering experience,

but the fact that the Infectus2 requires any soldering at all may be enough to

discourage its use altogether.

In addition to the potential difficulties in acquiring a suitable external NAND flash

controller, the proposed hardware-based imaging method required direct

physical access to the internal NAND flash storage device, which is soldered to

Page | 40

the back of the console‘s motherboard. Accessing this chip required the full

disassembly of the Nintendo Wii, which is presumed to be a time-consuming task

and is known to require the use of a relatively uncommon Tri-Wing screwdriver.

While it was considered likely that any person with basic soldering skills could

prepare the Infectus2 chip, the same could not easily be said for the process of

securing these leads to the appropriate electrical pins of the internal NAND flash

storage device. A solder-less approach which utilised the electrical vias was

thought to be the safest and most accessible method, but would likely require a

great deal of dexterity and wire of exactly the right size to ensure consistent

electrical contact with the NAND flash storage device‘s electrical pathways

and pins. Using solder to secure the leads to the appropriate vias would provide

a better quality circuit however this would require more advanced soldering

skills and a fine-tip soldering iron. A third proposal involved the attachment of

the leads directly to the appropriate electrical pins of the NAND flash storage

device. While this direct soldering approach was likely to ensure the best

possible electrical contact, the high level of difficulty and risk of damage to the

hardware meant that it was not considered feasible in the scope of this project.

4.3.3 Robustness of Approach

One of the main concerns which faced the proposed software-based imaging

methods was their reliance on the ability to exploit flaws in the Wii System Menu

or IOS. At present this is not an issue, as every version of the Wii System Menu is

exploitable in one way or another however with each Wii System Menu update

Nintendo fix bugs and reduce the number of publicly available exploits which

allow the execution of unsigned code.

The Wii System Menu was updated to version 4.3 on 21 June 2010 (34). This

update fixed a number of bugs including a buffer overflow which had previously

Page | 41

allowed a malformed Channel banner to be used to launch an arbitrary

executable from an SD flash memory card. As a result of Nintendo‘s efforts to

secure the Wii software platform, console owners who chose to install the Wii

System Menu update (or purchased a console with the 4.3 update pre-installed)

were unable to install the BootMii application package until it was updated by

its developers. In the case of the Wii System Menu 4.3 update, it took developers

35 days to circumvent the new security measures and release an updated

BootMii installation package.

While consoles which use current Wii System Menu versions will continue to be

exploitable, any future Wii System Menu update has the potential to remove the

bugs which allow unsigned code to be executed on the console, making

software NAND flash device imaging techniques vulnerable to forced

obsolescence unless officially sanctioned by Nintendo.

As hardware updates are far more difficult to force onto pre-existing consoles,

and the interface with a component as fundamental as the internal NAND flash

storage device is unlikely to be altered in new hardware iterations, a hardware-

based approach to NAND flash imaging was considered to be the most robust

approach barring any new method officially sanctioned by Nintendo for public

use.

4.4 Proposed NAND Flash Imaging Guidelines

Given the issues raised in this chapter, the following guidelines were proposed to

form the basis of a number of experiments to determine whether or not a

forensic image of the Nintendo Wii‘s internal NAND flash storage device could

be obtained.

Page | 42

1. The console would be fully disassembled and an image created using an

Infectus2 NAND flash controller before re-assembling the console.

2. In the event of the failure of the Infectus2 procedure, an attempt would

be made using Whiite Linux to acquire an image with dd.

3. As the Infectus2 procedure will not extract the console-specific encryption

keys needed to access the NAND file system, BootMii should be installed

and BackupMii used to obtain a new forensic image and dump of the

console-specific encryption keys.

It was proposed that a combination of imaging methods be used, as once a

forensic image of the console NAND flash storage device has been obtained, it

could be used in conjunction with the console-specific encryption keys in an

attempt to access the encrypted NAND flash file system.

Page | 43

Chapter 5 – Equipment and Experimental Methodology

This chapter of the report details the equipment used throughout the project as

well as providing an overview of the methodology used when designing and

scheduling the various imaging experiments.

5.1 Equipment

The Nintendo Wii console is arguably the most important piece of equipment

used during this project. The proposed experiments were carried out on a black,

PAL, ―Limited Edition‖ Nintendo Wii, which was purchased over the internet in

late May 2010 for £129.99. The console was bundled with a single Wiimote, the

Wii MotionPlus Wiimote accessory, and the Wii Sports and Wii Sports Resort

games.

Despite the console‘s ―Limited Edition‖ moniker, the disassembly process

confirmed the initial impression that the only difference between it and the

standard new-model Wii console is that the console body and controller are

black rather than white. Importantly, the console was built upon a standard

Type B motherboard, and shipped with Wii System Menu version 4.2 installed by

default. Due to the lack of homebrew software compatibility with Wii System

Menu version 4.3 in the weeks following its release in late June 2010, the

console‘s system software was not updated from version 4.2.

To assist in the disassembly of the console a Tri-Wing screwdriver was purchased

over the internet for £2.70. The Tri-Wing screw is rarely seen and thus used

primarily as an anti-tampering measure. A diagram of the head of a Tri-Wing

screw can be seen in Figure 5.1.

Page | 44

Figure 5.1: Diagram of a Tri-Wing Screw Head

An Infectus2 external NAND flash controller was acquired for use as part of the

hardware-based NAND flash imaging experiment. After an extensive search it

appears that the Infectus2 chip is no-longer being manufactured on a large

scale. As a result, the chip used in this project was purchased over the internet

from a North American retailer specialising in game console modifications.

A 2GB Secure Digital flash memory card was used to introduce software and

transfer data to and from the console (Figure 5.2).

In addition to the Wiimote which shipped with the console, a standard USB

keyboard was used to allow input when conducting the Linux-based software

imaging experiment, and a Nintendo GameCube controller was used to enter

the confirmation code in the homebrew software NAND image restoration

experiment.

The extraction and analysis of data from the internal NAND flash device images

was performed on a VirtualBox virtual machine installed with Ubuntu 10.04

Desktop Edition Linux and running on a MacBook Pro host machine.

Page | 45

Figure 5.2: Photograph of a 2GB Secure Digital flash memory card

5.2 Experimental Methodology

In order to accomplish the main aim of the project and determine the

practicality of acquiring a forensic image of the console‘s internal NAND flash

device, three experiments were proposed. These imaging experiments are

grouped into hardware-based and software-based methods, and are fully

described in Chapter 6 and Chapter 7 respectively.

As part of an attempt to ascertain the extent of changes made to the internal

NAND flash storage device during the setup and continued use of the console,

the hardware-based imaging experiment was conducted prior to powering-on

the console for the first time. It was hoped that an image recording the internal

NAND flash device in its ―out of the box‖ state would be useful in assessing the

changes which occur through normal use as well as providing the option to

reset the console to its factory state for use in future projects.

After the completion of the hardware imaging experiment, the console was

reassembled, booted in order to complete the initial setup procedure, and a set

Page | 46

of test data was created. The test data set formed the basis of data analysis

efforts described in Chapter 9.

Due to the unsatisfactory results of the Infectus2 and Whiite Linux NAND flash

device imaging experiments, the original methodology was altered slightly and

the BootMii homebrew software package was installed prior to creating the test

data set. The successful outcome of the BootMii-based NAND imaging

experiment resulted in the creation of a NAND flash device image while the

console was in a state which was as close to the ―factory condition‖ as was

possible.

The BootMii imaging experiment was conducted multiple times during the

console setup process, as noted in the list of steps below:

1. Nintendo Wii console removed from box and disassembled.

2. Failure of Infectus2 NAND imaging experiment. Console re-assembled.

3. Console booted and initial setup completed.

4. Failure of Whiite Linux NAND imaging experiment.

5. Installation of BootMii. Successful BootMii NAND imaging.

6. Console configured to join 802.11b/g wireless LAN.

7. Successful BootMii NAND imaging.

8. Installation of the Internet Channel.

9. Successful BootMii NAND imaging.

10. Creation of test data and BootMii NAND imaging as required.

The test data set was created through daily use of the console, including game

play, Internet Channel browsing (including use of web-based email services),

and exchanging messages and images to remote Wii consoles and external

email addresses through the Wii Message Board application.

A final experiment was planned in order to gauge the feasibility of restoring a

forensic image to the console‘s internal NAND flash device. While this

Page | 47

experiment was dependent on the success of at least one of the three NAND

flash imaging methods, it was hoped that the successful restoration of a forensic

image could reduce the risks associated with the live examination of the

console. Due to the potential risks involved with writing data to the internal

NAND flash storage device, this experiment was only conducted upon the

completion of all other imaging and data analysis tasks.

Page | 48

Chapter 6 – Hardware-based Imaging Experiment

This chapter describes the procedure followed in attempting to acquire a

forensic image of the data held by the Nintendo Wii‘s internal NAND flash

storage device. The description begins with an overview of the preparation of

the Infectus2 programmable NAND flash controller, before explaining the

possible methods of connecting the Infectus2 to the internal NAND flash device

and reading its contents.

It should be noted that before conducting this experiment, the complete

disassembly of the console was required. Full instructions as to the disassembly of

the console are included in Appendix A.

6.1 Preparation of the Infectus2 Chip

The Infectus2 was designed to function as a fully-programmable universal game

console modification chip. Its fully-programmable nature has led to it becoming

extremely well-supported by both the Nintendo Wii and wider game console

hardware hacking communities. The Infectus2 chip is shipped on a printed

circuit board measuring approximately 40x45mm, with a separate USB Mini

interface which can be connected using the supplied flat ribbon connecter

cable (Figure 6.1).

Before the Infectus2 chip could be attached to the internal NAND flash device,

it was necessary that a number of wires be soldered to the appropriate solder

pads on the Infectus2 printed circuit board.

There are sixteen wires which must be soldered to the command and data pads

on the right hand side of the Infectus2 printed circuit board. These wires will form

the bulk of the connection between the Infectus2 chip and the console‘s NAND

Page | 49

flash storage device. In an attempt to minimise the potential for errors due to

signal timing, each wire was carefully measured before each connection was

made.

Figure 6.1: The Infectus2 PCB, USB interface & ribbon cable

In addition to the command and data connections, two connections must be

made to allow for power and ground lines. In a typical Infectus2 installation

these wires would then be soldered directly to components on the Nintendo Wii

motherboard. However, as this approach has been designed to minimise the

potential for damage to the console these wires were soldered to ―crocodile‖

clips which were attached to the appropriate power and ground points on the

motherboard.

Although the command, data, power and ground wires are all that are strictly

necessary for the Infectus2 chip to read from the internal NAND flash device, it is

useful to include a mechanism which prevents the console from modifying its

Page | 50

contents during the imaging process. This was accomplished by adding an extra

connection from Data0 to ground through a momentary push button switch. This

switch is pressed and held closed in the seconds before and after the console

power button being pressed. The resulting short circuit prevents boot1 from

being read from the NAND flash storage device, thus halting the boot process

while still maintaining the power supply to the internal NAND flash storage

device.

Figure 6.2: Prepared Infectus2 chip connected to the USB interface

The final stage of preparation involved affixing a layer of insulating tape to the

rear of the Infectus2 printed circuit board in order to prevent inadvertent

Page | 51

contact between the Infectus2 package and components on the console‘s

motherboard.

A photograph of the fully prepared Infectus2 device is included as Figure 6.2. It

should be noted that the needles which are soldered to the ends of the

command and data wires were attached in an attempt to ease the solder-less

connection of the wires to the electrical vias.

6.2 Imaging Procedure

The Nintendo Wii‘s internal NAND flash storage device is soldered to the rear side

of the motherboard. When the console is viewed from the front, the

motherboard itself is set vertically along the left hand side. Unfortunately this

placement means that the console must be completely disassembled before

access can be gained to the NAND flash storage device, a time-consuming task

which requires the use of both Philips and Tri-Wing screwdrivers. Full instructions

as to the disassembly of the console are included in Appendix A.

Once the console was disassembled, the command and data wires which had

previously been soldered to the Infectus2 package were attached to the

appropriate electrical vias on the console motherboard. As noted on page 40,

a number of attachment techniques were initially considered, including

soldering the wires to the electrical vias, and soldering directly to the pins of the

NAND flash storage device. Due to the risks associated with the hand-soldering

of small-scale electronic components, it was decided that the stability of the

connection would be sacrificed in order to minimise the potential damage to

the console components.

Page | 52

Figure 6.3: Annotated NAND Flash Electrical Interface

Infectus2 Pad NAND Flash Device Pin Infectus2 Pad NAND Flash Device Pin

U 7 0 29

M 8 1 30

N 9 2 31

V 12 3 32

O 16 4 41

P 17 5 42

Q 18 6 43

T 19 7 44

Table 6.1: Mapping of Infectus2 pads to NAND Flash pins

Following from this decision, the next course of action was to insert the loose end

of each of the command and data wires into the electrical via connected to

the appropriate pin of the NAND flash device. A diagram and table showing the

electrical interface and mapping of connections between the Infectus2 and

NAND flash storage device are included as Figure 6.3 and Table 6.1 respectively.

The layout of the electrical vias differs greatly between Type A and Type B

motherboards, but by starting at the correct NAND flash storage device pin and

tracing the electrical pathways, it was possible to determine the electrical via

Page | 53

associated with each pin. Figure 6.4 and Figure 6.5 show photographs of Type A

and Type B motherboards which have been stripped of their major components

and had their electrical pathways traced to highlight the electrical via

associated with each NAND flash storage device pin. The highlighted vias have

been labelled with the alphanumeric identifier of the Infectus2 solder pad

whose corresponding wire should be inserted.

The insertion of wires into the appropriate vias is a task requiring a great deal of

luck and manual dexterity. It was originally proposed that American Wire Gauge

size 30 ―wire wrap‖ be used to form the required connections however early

testing indicated that smaller wire was needed, and a second attempt was

made with wire obtained by splitting an IDE hard drive ribbon cable into its

component strands.

Figure 6.4: Traced Electrical Pathways on a "Type A" Motherboard

Page | 54

Figure 6.5: Traced Electrical Pathways on a "Type B" Motherboard

After a discussion involving the author, project supervisor and a member of the

Lothian and Borders Police Forensic Computer Unit, it was proposed that an

approach commonly used in the manufacture and testing phases of circuit

board design may be applicable to the experiment. This approach would utilise

precisely positioned testing pins which would form a stable connection between

the Infectus2 wire and the associated NAND flash storage device pin. Ideally

these testing pins would be set in a rigid framework allowing the Infectus2

device to be quickly and consistently attached to the Nintendo Wii‘s internal

NAND flash storage device.

It was agreed that this ―rigid framework‖ approach had the highest potential to

provide a stable, solder-less connection between the components however,

due to financial and time constraints this approach was scaled back, and fine-

pointed, size 12 beading needles were soldered to the command and data

wires in place of specialist testing pins. The addition of fine-pointed hand-sewing

needles increased the ease with which connections could be made between

Page | 55

the components, although a great deal of time and manual dexterity was still

required.

With command and data connections in place, the power and ground lines

were connected to the motherboard. Power was taken by attaching the power

line ―crocodile‖ clip to a surface mounted device labelled FIL34. The ground

lines were connected to the metal strips encircling the motherboard. Once all of

the necessary connections were in place the Infectus2 package was

connected to the analysis computer using the supplied USB interface, and the

console motherboard connected to the mains power supply using the standard

Nintendo Wii mains power supply adaptor.

In order to prevent the console from fully booting and potentially corrupting any

acquired image of the NAND flash storage device, the following steps were

followed when powering-on the console:

1. Mains power was switched on. Red power button LED was observed.

2. Press and hold the momentary switch in order to short-circuit Data0 to

ground.

3. Press the console‘s front-mounted power button and observe the LED

colour change to green.

4. After observing the LED colour change, the momentary switch was

released.

The final stage of the imaging process involved the use of a software

application which instructed the Infectus2 package to read data from the

NAND storage device and write it to a file on the analysis workstation. The

amoxiflash application was developed by a member of the Wii homebrew

hardware and software hacking community who was dissatisfied with the official

software distributed with the Infectus2 chip, and was released to the public

under the GPL. (29)

Page | 56

Unfortunately, as shown in Figure 6.6, the amoxiflash application was unable to

properly detect the console‘s internal NAND flash storage device, thus resulting

in the failure of the experiment.

Figure 6.6: Error message produced by amoxiflash

6.3 Analysis of Experiment

Due to the lack of success in acquiring a copy of the data held by the internal

NAND flash storage device, this experiment must be considered a failure. The

exact reason for its failure is unknown, although it is thought that the imposed

condition that nothing be soldered to the motherboard is likely to have been a

primary factor.

6.3.1 Possible Causes of Failure

This section of the report describes the issues thought most likely to have been

responsible for the failure of this experiment.

root@analysis:~# amoxiflash-linux-0.5 dump nand.bin

amoxiflash version 0.5, (c) 2008,2009 bushing

infectus Device Found @ Address 002

infectus Vendor ID 0x010c4

infectus Product ID 0x082e3

Infectus version (?) = 81

Infectus Loader version = 0.32

PLD ID: NAND Programmer

ID = 200

ID = 200

ID = 200

Unknown flash ID 0200

If this is correct, please notify the author.

root@analysis:~#

Page | 57

Fault with the Infectus2 package

The initial primary concern was a fault with the Infectus2 package however the

amoxiflash terminal output (Figure 6.6) appears to show that the Infectus2 chip

was successfully detected. As a result, the probability of an error in this area was

deemed to be low.

Bad Solder Connections

The completed Infectus2 package required a total of 40 solder joints to function

perfectly in order to correctly read data from the console‘s NAND flash storage

device. Electrical continuity testing and a thorough visual inspection of the

Infectus2 package did not result in any obvious weak or bridged solder

connections. Given the relatively large margin for error afforded by the use of

solder pads rather than soldering directly to the chips, the probability of an

unseen error occurring in this area was deemed to be low.

Poor Electrical Properties of Sewing Needles

Metal hand-sewing needles are not typically known for their good electrical

properties. Although appearing to provide a well-fitting connection between

command and data wire, and electrical via, it was thought that the hitherto

unknown electrical properties of the sewing needles were likely to have an

adverse effect on the performance of the electrical circuit.

Another concern in this area was that the length of the needles, when added to

the length of the command and data wires, may have been too great to allow

the high quality transmission of an electrical signal between the NAND flash

storage device and the Infectus2 package.

Page | 58

Due to these factors, the probability for error in this area was considered to be

high.

Unknown Issue concerning the NAND flash storage device

The terminal output from the amoxiflash application (Figure 6.6) appears to

indicate that the Infectus2 package was recognised by the analysis workstation,

but the console NAND flash storage device was not.

It was noted that amoxiflash incorrectly determined the NAND flash chip

identifier to be 0x0200, rather than 0xECDC as expected for a Samsung NAND

flash storage device such as that used by the Nintendo Wii. An examination of

the amoxiflash source code revealed that, in addition to the identifiers of

NAND flash storage devices commonly found in the Nintendo Wii, there is also a

case which will display a terminal message if no NAND flash chip is detected

(35). The fact that a NAND flash chip identifier was specified at all appears to

support the conclusion that some data – albeit incorrect – is read from the

NAND flash chip by the Infectus2 package.

It was also noted that anecdotal information from the Nintendo Wii homebrew

community suggests that the Samsung NAND flash device used by the console is

sensitive to electrical disturbances, and is best removed completely from the

motherboard and mounted in a TSOP-style adaptor before attempting

hardware-based imaging. As explained above, this approach was ruled out

due to its complexity and potential to damage the device.

With these factors in mind, the probability of an error occurring in this area was

deemed to be high.

Page | 59

Chapter 7 – Software-based Imaging Experiments

This chapter details the process of exploiting the system software running on the

Nintendo Wii, and the steps which must then be taken in order to acquire a

forensic image of the console‘s NAND flash storage device.

7.1 Exploiting Vulnerabilities in Wii System Software

Before unsigned code can be loaded and executed by the Nintendo Wii, the

security measures put in place by Nintendo system software must be

circumvented. Typically these measures are circumvented by buffer overflow

exploits, which abuse poor data input handling practices to allow the execution

of arbitrary code.

There are currently four publicly available buffer overflow exploits which enable

unsigned code execution on the Nintendo Wii. Three of these exploits rely on

flaws in game software, while the Bannerbomb exploit relies on a flaw in the Wii

System Menu.

The effectiveness of these exploits depends largely upon the version of the Wii

System Menu which is installed on the console. Table 7.1 shows the compatibility

of each of the four public exploits with each version of the Wii System Menu

since version 3.0. Detailed information regarding compatibility with earlier

versions of the Wii System Menu was not available, but it is presumed that the

same vulnerabilities exist in all previous Wii System Menu versions.

In summary, only the Indiana Pwns exploit is known to work correctly on all

currently available Wii System Menu and console combinations. The Smash

Stack exploit is known to work only on NTSC Wii consoles however it is believed

to be compatible with all current Wii System Menu Versions. The Twilight Hack

Page | 60

and Bannerbomb exploits are compatible with Wii System Menu versions below

4.0 and 4.3 respectively.

System Menu Version Twilight Hack Bannerbomb Smash Stack Indiana Pwns

3.0 Beta 1 Version 1 NTSC Only PAL & NTSC

3.1 Beta 1 Version 1 NTSC Only PAL & NTSC

3.2 Beta 1 Version 1 NTSC Only PAL & NTSC

3.3 Beta 1 Version 1 NTSC Only PAL & NTSC

3.4 Beta 2 Version 1 NTSC Only PAL & NTSC

4.0 Fixed Version 1 NTSC Only PAL & NTSC

4.1 Fixed Version 1 NTSC Only PAL & NTSC

4.2 Fixed Version 2 NTSC Only PAL & NTSC

4.3 Fixed Fixed NTSC Only PAL & NTSC

Table 7.1: Compatibly of Wii software exploits

7.1.1 The Twilight Hack

The Twilight Hack is the first publicly-available exploit which enabled the

execution of unsigned code and utilises a specially crafted saved game file for

the game ―The Legend of Zelda: Twilight Princess‖. As of Wii System Menu version

4.0 the Twilight Hack no longer functions, however its source code has been

made available to the public with the hope that it will encourage the

homebrew software community to find and develop additional saved game

buffer overflow exploits (36).

7.1.2 Bannerbomb

The Bannerbomb exploit differs from other publicly-available exploits in that is

targets a flaw in the Wii System Menu rather than in a specific game. This means

that unsigned code can be executed on any console which uses a vulnerable

version of the Wii System Menu without the need for additional software. This

Page | 61

factor is potentially of enormous benefit to the forensic examiner, as it allows a

standard SD flash memory card image to be prepared and distributed without

having to account for multiple copies of an exploitable game.

The main advantage of Bannerbomb however also proved to be its greatest

weakness. While it is very difficult for Nintendo to redress flaws in games (which

exist in static formats and are often developed by third-parties), flaws in the Wii

System Menu can be patched and pushed to users with relative ease.

The vulnerability on which Bannerbomb relied was rectified by the Wii System

Menu version 4.3 update (37).

7.1.3 Smash Stack

Smash Stack takes advantage of a buffer overflow vulnerability in the NTSC

version of the game ―Super Smash Bros. Brawl‖. Unlike the Twilight Hack and

Indiana Pwns this exploit functions against an in-game custom stage loader

rather than the more traditional malformed saved game file. This difference

allows the exploit to load unsigned code directly from the SD card reader, the

Wii System Menu and thus making the exploit very hard to block.

As the buffer overflow relied on by Smash Stack exists only in NTSC versions of the

game, consoles manufactured for sale outside of North America are unlikely to

be vulnerable to this exploit (38).

7.1.4 Indiana Pwns

Indiana Pwns is a saved game exploit based on the now defunct Twilight Hack

source code. It operates in the same fashion as the Twilight Hack, but requires a

copy of the game ―LEGO Indiana Jones: The Original Adventures‖.

Page | 62

Unlike the Twilight Hack, Indiana Pwns is thought to be compatible with all

current Wii System Menu versions (39).

7.2 Using Linux

This section describes the experiment which was carried out to determine the

suitability of using a modified Linux-based operating system to acquire a forensic

image of the Nintendo Wii‘s internal NAND flash storage device.

Ultimately this experiment failed, as although the console could be made to

boot into a Linux operating system with no requirement for additional homebrew

software to be installed, the internal NAND flash device did not appear to be

accessible.

7.2.1 Preparation of Secure Digital Flash Memory Card

In order to function as a complete Linux operating system the SD flash memory

card must be correctly partitioned and formatted in such a manner that it can

be read by both the Wii System Menu and Whiite Linux environments.

As outlined in Chapter 5, the Nintendo Wii console used in this experiment

utilised Wii System Menu version 4.2. The Bannerbomb exploit was fixed with the

release of Wii System Menu version 4.3, but the Smash Stack or Indiana Pwns

exploits are likely to be fully-functional on updated consoles.

This section describes the process of partitioning, formatting and preparing a

2GB SD flash memory card for use as a self-contained Linux operating system for

the Nintendo Wii. The steps below were carried out using a workstation running a

standard installation of Ubuntu 10.04 Desktop Edition and an external SD flash

Page | 63

memory card reader. In these instructions it is assumed that the SD flash memory

card is seen as a device named /dev/sdb.

1. With the SD flash memory card inserted into the reader, ensure that any

existing partitions on the card are unmounted.

2. Start the fdisk partition management utility.

3. Remove any existing partitions from the SD flash memory card by entering

the command ‗o‘.

4. Create a 256MB primary FAT16 partition to store the loader and Whiite

Linux kernel.

5. Create a primary Linux partition to store the Whiite Linux file system. All files

created by the Whiite Linux instance will be stored in this partition.

Command (m for help): n

Command action

 e extended

 p primary partition (1-4)

p

Partition number (1-4): 1

First cylinder (1-984, default 1): <RETURN>

Using default value 1

Last cylinder or +size or +sizeM or +sizeK (1-984, default 984): +256M

Command (m for help): t

Selected partition 1

Hex code (type L to list codes): 6

Changed system type of partition 1 to 6 (FAT16)

root@analysis:~# fdisk /dev/sdb

Page | 64

6. Verify the new partition table layout by entering the command ‗p‘ and

write the table to the SD flash memory card by pressing ‗w‘.

7. Create a FAT16 file system labelled boot on the first newly-created

partition.

8. Create an ext3 file system labelled whiite on the second newly-created

partition.

9. Mount the boot partition and untar the Whiite Linux kernel tarball into the

root directory.

root@analysis:~# mkfs.ext3 –L whiite /dev/sdb2

root@analysis:~# mkfs.vfat –n boot /dev/sdb1

Command (m for help): p

 Disk /dev/sdb: 2032 MB, 2032664576 bytes

 64 heads, 63 sectors/track, 984 cylinders

 Units = cylinders of 4032 * 512 = 2064384 bytes

 Device Boot Start End Blocks Id System

 /dev/sdb1 1 125 251968+ 6 FAT16

 /dev/sdb2 126 984 1731744 83 Linux

Command (m for help): w

 The partition table has been altered!

 Calling ioctl() to re-read partition table.

 Syncing disks.

Command (m for help): n

Command action

 e extended

 p primary partition (1-4)

p

Partition number (1-4): 2

First cylinder (126-984, default 126): <RETURN>

Using default value 126

Last cylinder or +size or +sizeM or +sizeK (126-984, default 984): 984

Page | 65

10. Unzip the Bannerbomb exploit and move the private directory into the

root directory of the boot partition.

11. Unzip the LoadMii archive and copy the file loadMii.elf to the root of

the boot partition as boot.elf. Some applications are unable to execute

directly from Bannerbomb. The LoadMii bootloader application can be

used to reduce this risk.

12. Unmount the boot partition, and mount the whiite partition.

13. Untar the Whiite Linux file system tarball into the root directory of the

whiite partition.

14. Unmount the whiite partition.

The SD flash memory card is now fully prepared for use as a self-contained,

persistent Linux operating system.

root@analysis:~# umount /media/whiite

root@analysis:~# tar -C /media/whiite -xjvf 'debian-lenny-5.0+whiite-

1.10.tar.bz2'

root@analysis:~# umount /media/boot

root@analysis:~# mount /dev/sdb2 /media/whiite

root@analysis:~# gunzip loadMii.zip

root@analysis:~# cp loadMii/loadMii.elf /media/boot/boot.elf

root@analysis:~# gunzip abd6a_v200.zip

root@analysis:~# mv private /media/boot

root@analysis:~# mount /dev/sdb1 /media/boot

root@analysis:~# tar -C /media/boot -xjvf gc-linux-mikep5-

v2.6.32+whiite-1.10.tar.bz2 -o --strip-components 1

Page | 66

7.2.2 Imaging Procedure

Before booting the console the following steps were taken:

 A standard USB keyboard was attached

 The prepared SD flash memory card was inserted

The console was powered on as normal. Once booted to the Wii System Menu,

the SD Card Menu in the bottom left hand corner of the screen was selected.

The Bannerbomb exploit operated as expected and displayed a warning dialog

and prompt to execute the boot.dol/boot.elf file in the root directory of the

boot partition on the SD flash memory card (Figure 7.1).

Figure 7.1: Pop-up dialog indicating the success of Bannerbomb exploit

Page | 67

After selecting the ―Yes‖ option, the LoadMii bootloader application was

executed and appeared on-screen after a slight delay. Using the buttons of the

Wiimote to navigate the directory structure, the file

apps/mikep5.110/boot.elf was selected and executed by the LoadMii

application.

Figure 7.2: Whiite Linux booting and login prompt

After another short delay the Whiite Linux boot process began, printing status

messages to the console throughout the process. At its completion a text login

prompt was displayed at the bottom of the screen (Figure 7.2).

The Whiite Linux file system tarball is initially configured to allow access with the

username root and the password whiite. If a USB-to-Ethernet adapter is

connected to the console, Whiite Linux will use DCHP to attempt to configure it

with the existing Local Area Network. A wireless networking configuration utility is

Page | 68

provided however it did not appear to function correctly when Whiite Linux is

booted directly from the SD flash memory card.

Cursory checks indicated that the dd low-level data manipulation tool is

installed by default, although the netcat networking tool is not.

The experiment was halted at this point as it was determined after much

searching and probing of devices that the Whiite Linux operating system was

unaware of the console‘s internal NAND flash storage device and, thus, unable

to acquire a forensic image of the data which it contains.

7.2.3 Analysis of Experiment

This experiment has shown that the Nintendo Wii is capable of supporting a fully-

functional Linux operating system. As Whiite Linux is based on Debian Linux, the

Debian apt-get package management system can be used to install and

update software allowing Whiite Linux to be tailored toward forensic use and

distributed as an SD flash memory card image.

Although it has been shown possible to successfully boot a Linux operating

system on the Nintendo Wii without the need to install any additional software,

this experiment must be regarded as a failure due to the inaccessibility of the

console‘s internal NAND flash storage device.

While this approach may be feasible in the future, the reverse-engineering skills

and low-level programming knowledge likely to be required in order to develop

a suitable operating system NAND flash storage device driver are far beyond

the scope of this project.

Page | 69

7.3 Using Homebrew Software

This section describes the experiment which was conducted in order to

determine the suitability of the BootMii homebrew software package for use in

the acquisition of data from the Nintendo Wii‘s internal NAND flash storage

device.

While this procedure resulted in the acquisition of a copy of the data held by

the NAND flash storage device and the extraction of the console-specific

encryption keys necessary to render the data intelligible, the experiment cannot

be considered a complete success due to concerns over the integrity and

repeatability of the imaging process. It is believed that this experiment it has

produced an imaging method which is valid as a proof-of-concept, however

further work is suggested which may result in the refinement of the method.

7.3.1 Preparation of Secure Digital Flash Memory Card

As outlined in Chapter 5, the Nintendo Wii console used in this experiment

utilised Wii System Menu version 4.2. The Bannerbomb exploit was fixed with the

release of Wii System Menu version 4.3, but the Smash Stack or Indiana Pwns

exploits are likely to be fully-functional on updated consoles.

This section describes the process of partitioning, formatting and preparing a

2GB SD flash memory card in order to install and use the BootMii homebrew

software package. The steps below were carried out using a workstation running

a standard installation of Ubuntu 10.04 Desktop Edition and an external SD flash

memory card reader. In these instructions it is assumed that the SD flash memory

card is seen as a device named /dev/sdb.

1. With the SD flash memory card inserted into the reader, ensure that any

existing partitions on the card are unmounted.

Page | 70

2. Start the fdisk partition management utility

3. Remove any existing partitions from the SD flash memory card by entering

the command ‗o‘.

4. Create a primary FAT16 partition.

5. Verify the new partition table layout by entering the command ‗p‘ and

write the table to the SD flash memory card by pressing ‗w‘.

6. Create a FAT16 file system labelled BootMii on the first newly-created

partition.

Command (m for help): p

 Disk /dev/sdb: 2032 MB, 2032664576 bytes

 64 heads, 63 sectors/track, 984 cylinders

 Units = cylinders of 4032 * 512 = 2064384 bytes

 Device Boot Start End Blocks Id System

 /dev/sdb1 1 984 1983712 6 FAT16

Command (m for help): w

 The partition table has been altered!

 Calling ioctl() to re-read partition table.

 Syncing disks.

Command (m for help): n

Command action

 e extended

 p primary partition (1-4)

p

Partition number (1-4): 1

First cylinder (1-984, default 1): <RETURN>

Using default value 1

Last cylinder or +size or +sizeM or +sizeK (1-984, default 984): 984

Command (m for help): t

Selected partition 1

Hex code (type L to list codes): 6

Changed system type of partition 1 to 6 (FAT16)

root@analysis:~# fdisk /dev/sdb

Page | 71

7. Mount the newly-created BootMii partition.

8. Unzip the Bannerbomb exploit and move the private directory into the

root directory of the BootMii partition.

9. Unzip the HackMii installer archive and move the file boot.elf into the

root directory of the BootMii partition.

10. Unmount the BootMii partition.

The SD flash memory card is now fully prepared.

7.3.2 Imaging Procedure

Before the BootMii package can be used to create an image of the internal

NAND flash storage device, it must be installed on the console. The installation

process makes permanent changes to the contents of the NAND flash device,

although the package installer does provide an option to uninstall the each of

the BootMii package components.

root@analysis:~# umount /media/BootMii

root@analysis:~# gunzip hackmii_installer_v0.6.zip

root@analysis:~# mv hackmii_installer_v0.6/boot.elf /media/BootMii

root@analysis:~# gunzip abd6a_v200.zip

root@analysis:~# mv private /media/BootMii

root@analysis:~# mount /dev/sdb1 /media/BootMii

root@analysis:~# mkfs.vfat –n BootMii /dev/sdb1

Page | 72

Prior to beginning the installation process, the SD flash memory card was

prepared as described above and inserted into the front-mounted SD flash

memory card reader.

The console was booted as normal and the SD Card Menu was selected from

the lower left-hand corner of the Wii System Menu, causing the Bannerbomb

exploit to be run (Figure 7.1) which in turn executed the BootMii package

installer.

The first visible action of the BootMii package installer is to display a screen

informing the user that the software is to be distributed freely and that no money

should be exchanged for it. Once the user has indicated that the message has

been read, the package installer runs a series of tests to determine the

compatibility of homebrew software with the specific hardware and software

revisions used by the console.

As shown in Figure 7.3, the Homebrew Channel and DVDX components of the

package can be installed as intended by the developers, but a notice is given

stating that BootMii can only be installed as an IOS. This restriction is an effect of

Nintendo‘s efforts to patch the boot1 link in the bootloader chain. Ideally,

BootMii will be installed as a boot2 replacement, providing protections against

file system corruption and installing itself predictably to blocks 1-7 of the internal

NAND flash storage device. With the patching of the boot1 RSA certificate hash

collision bug on consoles manufactured sometime in 2008, boot1 cannot be

tricked into loading modified versions of boot2 on new-model Wii consoles.

While the installation of BootMii as a boot2 replacement is preferable, the

BootMii IOS provides sufficient functionality to complete this experiment.

The first component to be selected for installation is the Homebrew Channel. The

Homebrew Channel acts as a permanently installed Wii System Menu exploit

allowing unsigned code to be loaded directly from an SD flash memory card

Page | 73

without the need to reuse the Bannerbomb (or similar) exploit. Its installation is

optional, but highly recommended when BootMii is to be installed as IOS.

Figure 7.3: Results of BootMii installer compatibility tests

Following the successful installation of the Homebrew Channel, the BootMii

application was successfully installed as IOS before exiting the installation

package which returned the console to the Wii System Menu. Figure 7.4 shows

the Wii System Menu which now contains an icon for the newly-installed

Homebrew Channel. Selecting the Homebrew Channel and pressing the

―Home‖ button on the Wiimote displays the Homebrew Channel menu from

which the BootMii application can be executed (Figure 7.5). It should be noted

that the BootMii package installer creates a number of configuration files on the

SD flash memory card during the Homebrew Channel and BootMii installation

process. This SD flash memory card should be inserted before starting the

Homebrew Channel application.

Page | 74

Action Wii Console Buttons Nintendo GameCube

Previous Option –

Next Option

Select Option

Table 7.2: Summary of BootMii controls

Once BootMii is launched the WiiMote controller is no-longer recognised as a

valid input device. Instead, a Nintendo GameCube controller or the Power and

Reset buttons on the front of the console can be used to navigate the BootMii

application menus. A summary of the controls is contained in Table 7.2.

Figure 7.4: Wii System Menu updated after Homebrew Channel installation

Page | 75

Figure 7.5: The Homebrew Channel menu

The BootMii application displays a main menu with four options, as shown in

Figure 7.6 (Left). Upon selection of the forth option the NAND flash operations

menu, shown in Figure 7.6 (Right), is displayed to the user. The first option starts

the BackupMii application which reads the data from the internal NAND flash

storage device and writes a copy of it to the SD flash memory card. The second

option uses the RestoreMii application to copy an acquired image from the SD

flash memory card to the console‘s internal NAND flash file system.

After selecting the first option, the BackupMii application began the process of

copying the data from the internal NAND flash device on to the SD flash

memory card.

During the copying process a number of warnings referring to ―Factory Bad

Blocks‖ should be expected. These blocks are a result of errors in the

manufacturing process, which works to produce a NAND flash device operating

Page | 76

within a certain tolerance level. It has been reported that of the 4096 blocks

contained on the NAND flash memory chip, at least 4016 must be valid. This

tolerance allows for up to 80 ―Factory Bad Block‖ warnings before a chip is to be

considered faulty (40).

Figure 7.6: BootMii NAND flash backup menu screens

Figure 7.7 shows the BackupMii application as it progresses through the NAND

flash imaging process. The application‘s progress is measured by the coloured

grid in the top half of the screen. Each square in the grid represents one of the

internal NAND flash device‘s data blocks. As each block is copied its

representative grid square changes colour from grey to green, allowing the user

to accurately assess the progress of the operation.

Once the data has been copied to the SD flash memory card a verification

procedure is run against the original data on the internal NAND flash device

(Figure 7.8). It is possible to skip this operation but not recommended as it is likely

to be the most practical method of assessing the integrity of the BackupMii

imaging operation.

Upon the completion of the imaging process the user is invited to press any

button to exit the BackupMii application. Returned to the BootMii NAND

operation menu, the forth option was selected to return to the BootMii main

Page | 77

menu, and then the first option which reboots the console to the Wii System

Menu.

Figure 7.7: BackupMii during the imaging process

Figure 7.8: BackupMii after completion of imaging process

Page | 78

7.3.3 Analysis of Experiment

This experiment has shown that it is possible for homebrew software running on

the Nintendo Wii as IOS both to access and record the contents of the console‘s

internal NAND flash storage device. In addition to creating an image of the

NAND flash storage device, the BackupMii application also extracted the

console-specific encryption keys which are required before any attempt can be

made to extract meaningful data from the image of the NAND flash storage

device.

While this experiment was successful in that an image was captured, it has not

been possible to show conclusively that the captured image represents a wholly

accurate copy of the data stored by the internal NAND flash device. The

BackupMii application runs a verification routine which takes place after

copying the data from the internal NAND flash to the SD flash memory card,

although it is believed that this verification routine is most likely to involve

verifying that the data written to the SD flash memory card matches that on the

internal NAND flash device, without access to the BackupMii source code it is

not possible to be certain of the exact operation being performed.

In addition to the concern over the integrity of the data copying functionality,

there is reason to be concerned over the repeatability of the entire BackupMii

process. This concern came to light after repeating the BackupMii imaging

process multiple times in quick succession. Despite not exiting the BootMii

application and minimising the period of time between acquisition attempts, it

does not appear to be possible to create two images of the same NAND flash

storage device which produce matching MD5 or SHA-1 hashes. One likely

explanation for this issue is the fact that the Starlet processor periodically

accesses and possibly changes to the data held by the NAND flash storage

Page | 79

device. This conclusion is drawn from the need for a momentary push-button

switch to be used in conjunction with the Infectus2 NAND flash controller, the

purpose of which was to short-circuit the Data0 line to ground, halting the boot

process while maintaining a power supply to the NAND flash device.

With these concerns in mind it is believed that this experiment can be

considered a successful proof-of-concept. It is recommended that the software

imaging process be treated in the same regard as the live-imaging of a

standard personal computer. It is also believed that a legitimate case can be

made for the development of an open-source alternative to the BootMii

package, concentrating on emulating the functions of the BackupMii

application while reducing the footprint of the package to the minimum

required while still ensuring effective operation. Although it is believed that this

goal may be accomplished through the use of the open-source ―MINI‖ IOS

replacement libraries, the time-scale of the project means that this potential

solution must be regarded as future work (41).

Page | 80

Chapter 8 – Restoration of an Acquired Image

This experiment was originally proposed to determine the feasibility of restoring a

previously acquired copy of the data held by the internal NAND flash device to

the console in order to assist with its ―live examination‖, as described in Turnbull‘s

paper ―Forensic Investigation of the Nintendo Wii: A First Glance‖ (26).

Due to the security measures built in to the Nintendo Wii, NAND flash device

images captured from one console cannot be made to function on another

console without making extensive modifications relating to the console-specific

encryption keys (42). As a result it is necessary that the seized console be used

when conducting any ―live examination‖, modifying data and potentially

destroying evidence in the process.

A successful NAND flash device image restoration technique would allow the

console to be reset to its seized state, providing multiple opportunities for

examination, and potentially reducing the impact of inadvertent modification

of the console‘s data.

The experiment described in this chapter uses the RestoreMii application

bundled with the BootMii homebrew software package to copy an image from

the SD flash memory card to the internal NAND flash storage device. In this case

an attempt will be made to restore the ―baseline‖ NAND flash device image

captured after the initial setup and installation of the BootMii homebrew

software package; reverting the console to a state as close to ―clean‖ as is

possible with a software-based imaging procedure.

Page | 81

8.1 Preparation for Restoration

The Secure Digital flash memory card used in this experiment is the same card

used in the BackupMii NAND flash device imaging experiment described in

section 7.3. No modification of the partition table or file system should be

necessary, although the configuration files created by the BootMii homebrew

software package installer appear to be required in order to launch the BootMii

application.

The file containing the NAND flash storage device image captured in the

homebrew software imaging experiment was copied to the root directory of the

SD flash memory card as nand.bin.

Finally, a Nintendo GameCube controller was connected to one of the

GameCube controller ports hidden by a flap on the top of the console. This is

required in order to enter a button sequence confirming that the user

understands the risks associated with writing data directly to the internal NAND

flash device and that they are willing to proceed with the operation.

8.2 Restoration Procedure

Prior to booting the console, the prepared SD flash memory card was inserted

into the reader on the front of the console and the Nintendo GameCube

controller was plugged into a port hidden by a flap on the top.

Once the console had booted to the Wii System Menu, the Homebrew Channel

was selected and the BootMii application started as described on page 75.

The GameCube controller was used to navigate the BootMii menus as shown in

Figure 7.6. First to select the NAND flash operations menu, and then to select the

second option which launches the RestoreMii application.

Page | 82

Figure 8.1: The first screen shown by the RestoreMii application

The launch screen, shown in Figure 8.1, informs the user that the restoration

process will first be run as a simulation, and prompts for controller input to

continue. Proceeding to the next screen (Figure 8.2), RestoreMii checks the

internal NAND flash file system to determine the state of the boot2 bootloader.

If the BootMii application has been installed as a modification to the boot2

bootloader stage, the risks associated with writing directly to the internal NAND

flash storage device are greatly reduced. In this case – as is likely with all

Nintendo Wii consoles manufactured after mid-2008 – the BootMii application

was only available as an IOS, which does not afford any of the protections

possible through the modification of boot2. If a BootMii IOS installation is

detected a warning is displayed advising that any failure during the restoration

process may result in the console becoming unusable.

Page | 83

Figure 8.2: The warning screen displayed by the RestoreMii application

After pressing the deliberately awkward A + B + X + Y button combination on

the Nintendo GameCube controller, the simulated restoration begins. On the

first pass, each block of data on the internal NAND flash storage device is

compared to the corresponding block in the NAND flash device image stored

on the SD flash memory card. If the data blocks are found to be identical they

will be skipped during the restoration process. Where data blocks are found to

differ, the block held on the SD card will be written to the internal NAND flash

device. An illustration of the differences found between the current internal

state of the console and the previously captured NAND flash device image can

clearly be seen in Figure 8.3.

Page | 84

Figure 8.3: Illustration of the differences between NAND flash device images

Figure 8.4: Confirmation of the success of the restoration procedure

Page | 85

Upon the successful completion of the simulation, the user will be prompted to

begin the final restoration process, at which point the NAND flash device image

contained on the SD flash memory card will be written to the internal NAND flash

storage device. It is important to note that any interruption to the procedure

from this point onward may lead to the console being rendered completely

inoperable.

The data blocks highlighted during the simulated restoration process are

overwritten with the corresponding data blocks from the NAND flash device

image stored on the SD flash memory card. At the conclusion of this process, a

confirmation screen similar to that shown in Figure 8.4 will be displayed.

At this point the RestoreMii application was exited and the console rebooted to

the Wii System Menu. The changes made by the restoration procedure are

clearly visible in Figure 8.5, the most obvious of which are the removal of the

Internet Channel application, and the replacement of the photograph of a bird

with the standard icon for the Photo Channel.

Figure 8.5: Wii System Menu before (L) and after (R) the restoration process

Page | 86

8.3 Analysis of Experiment

This experiment resulted in the complete restoration of a previously acquired

NAND flash storage device image, and can thus be considered a success.

Despite the success of this experiment there are a number of serious risks

associated with writing data directly to the internal NAND flash storage device,

as a corrupt NAND flash device image or loss of power during the restoration

process will almost certainly leave the NAND flash file system corrupt and render

the device unable to boot. These risks are mitigated on older consoles with

boot1 bootloader stages which are vulnerable to the RSA certificate hash

collision bug as described on page 17, as this vulnerability allows the console to

be partially booted without the need for a valid NAND flash file system through

the BootMii application. However, this boot1 bug was rectified on consoles

manufactured since mid-2008, meaning that NAND flash file system corruption

will likely leave the console completely unusable unless a valid NAND flash

storage device image can be restored using external hardware.

While this experiment has shown that it is possible to restore the internal state of

the Nintendo Wii to an earlier snapshot, the risks outlined above lead the author

to recommend that this procedure be carried out only when necessary,

particularly on post-2008 consoles, as any error in the procedure may result in

the console being rendered completely inoperable.

Page | 87

Chapter 9 – Data Analysis

This chapter details the creation, extraction and analysis of test data from the

captured image of the internal NAND flash storage device.

9.1 Creation of Test Data

A great deal of time was spent during the planning phase of the project

determining the most efficient method of creating a set of test data. The test

data should ideally be representative of typical use of the console while still

containing data relating to the use of uncommon or niche features which may

have potential for abuse.

After some discussion between the author, project supervisor, and a member of

Lothian and Borders Police Forensic Computer Unit, it was decided that the

focus of any test data should be on the networking capabilities of the console –

primarily the exchange of messages and images. In an extension to scenarios

used in laboratory-based coursework exercises, test data was created which

involved the downloading and exchange of ornithological images, where data

relating to birds or bird watching topics would be considered suspect. With this

in mind, the creation of test data can be broken down into the three areas

described below.

9.1.1 General Use

This area aimed to simulate the typical use of the console by a home user. The

802.11b/g wireless network adapter was configured to join a local area network,

and the Internet Channel was downloaded from the Wii Shop Channel. Two

Page | 88

―Mii‖ avatars were created, named ―Peter‖ and ―John Doe‖. A short period of

time was also spent playing the games listed below:

 Wii Sports

 Wii Sports Resort

 Madden NFL 08

9.1.2 Internet Browsing

The internet browsing sessions used to create the test data can be roughly split

into two groups. The first group of browsing sessions were an extension to the

laboratory-based coursework examples involving the viewing of images of birds

and internet searches for bird watching topics. During these sessions, a specially-

created web-based email account was accessed and used to exchange a

number of emails with another specially-created email address.

A second group of sessions involved more general internet browsing, including

the University of Strathclyde Computer and Information Sciences website, and a

number of searches relating to Alan Turing and his paper ―On Computable

Numbers, with an Application to the Entscheidungsproblem‖4.

9.1.3 Exchange of Messages

Extensive use of the Wii Message Board feature was made in exchanging text

messages and images between the test console and a second, unrelated

console, and between the test console and a number of specially-created

web-based email accounts named ―Alice‖ and ―Bob‖.

4 London Mathematical Society, 1937. Proceedings of the London Mathematical Society. Vol. 42,

pp. 230-265. Available online: http://www.turingarchive.org/viewer/?id=466&title=01a

Page | 89

Particular attention was paid to the Wii Message Board Address Book, which

acts as a white listing mechanism requiring the mutual authorisation of both

sender and recipient before the exchange of messages is permitted.

9.2 Accessing the NAND flash file system

It is thought likely that the Nintendo Wii uses a specially-developed, proprietary

file system. No details have been made public by Nintendo, but the efforts of

the homebrew software community have resulted in the release of a number of

tools which are able to read the Nintendo Wii file system, albeit in a rudimentary

manner.

One such tool is wiinandfuse, which is released under the GPL-compatible MIT

Licence and uses the Filesystem in Userspace (FUSE) Linux kernel module in order

to mount an encrypted Wii NAND flash device image as a virtual Linux file

system. The wiinandfuse tool is currently under development, but at the time of

writing the most recent stable release was version 1.1 (43).

When executed without providing any command-line arguments, wiinandfuse

displays a screen of usage information which is reproduced in Figure 9.1.

Before wiinandfuse can be used to mount a NAND flash device image it is

necessary to create mount point to which the virtual file system will attach itself.

In this case a new directory named nand was created in the system root

directory.

It was found through experimentation that in addition to the specified file

containing the NAND flash device image and mount point, two command-line

flags were required before the virtual file system could be successfully created.

First, the –h flag was required to disable Hashed Message Authentication Code

verifications. Setting this flag means that writing to the virtual file system is not

Page | 90

permitted, resulting in read-only access. The second flag used is –e. This is

currently required due to a bug in wiinandfuse version 1.1 which prevents the

correct handling of the Error-Correcting Code included in the NAND flash

device image created by the BootMii procedure. Rather than correctly

processing bad ECC exceptions, attempting to access files contained within the

virtual file system will often result in software crashes due to input/output errors.

While not ideal, the use of this flag is currently the only method of accessing the

entire virtual file system.

The procedure followed to manually mount a NAND flash device image as a

virtual file system with wiinandfuse is shown below:

This procedure was later automated in a small collection of Python applications

named WiiTools which was developed during the data analysis phase in order to

simplify the extraction and processing of user data from a Nintendo Wii NAND

flash device image. Further details regarding the WiiTools Python script collection

can be found in Appendix C.

root@analysis:~# mkdir /nand

root@analysis:~# wiinandfuse ~/nand.bin /nand -h –e

wiinandfuse v1.1 by yellowstar6

root@analysis:~#

root@analysis:~#ls –l /nand

total 0

drwxr-xr-x 2 root root 0 1970-01-01 00:59 import

drwxr-xr-x 2 root root 0 1970-01-01 00:59 meta

drwxr-xr-x 2 root root 0 1970-01-01 00:59 shared1

drwxr-xr-x 2 root root 0 1970-01-01 00:59 shared2

drwxr-xr-x 2 root root 0 1970-01-01 00:59 sys

drwxr-xr-x 2 root root 0 1970-01-01 00:59 ticket

drwxr-xr-x 2 root root 0 1970-01-01 00:59 title

drwxr-xr-x 2 root root 0 1970-01-01 00:59 tmp

root@analysis:~#

Page | 91

Figure 9.1: Usage information for the wiinandfuse file system tool

9.3 Analysis of Extracted Data

This section of the report details the locations of files which contain data likely to

be of interest to a forensic analyst. With the networking capabilities of the

console in mind, the focus of this data tends to be on internet browsing, email-

like messaging, and the list of authorised contacts which acts as a message

white listing service.

root@analysis:~# wiinandfuse

wiinandfuse v1.1 by yellowstar6

Mount Wii NAND images with FUSE.

Usage:

wiinandfuse <nand.bin> <mount point> <options>

Options:

 -s: Dump contains only the 4MB SFFS. Reading/writing files will do

nothing, the data reading buffers will be cleared.

 -k: Directory name of keys to use for raw NAND images. Default for

keyname is "default". Path: $HOME/.wii/<keyname>

 -p: Use NAND permissions. UID and GUI of objects will be set to the

NAND UID/GID, as well as the permissions. This option only enables

setting the UID/GID and permissions in stat, the open and readdir

functions don't check permissions.

 -g<supercluster>: Use the specified SFFS supercluster index. If no

number is specified, the superclusters are listed.

 -h: Disable SFFS HMAC verification. Default is enabled.

 -v: Abort/EIO if HMAC verification of SFFS or file data fails. If

SFFS verification fails, wiinandfuse aborts and NAND isn't mounted. If

file data verification fails, read will return EIO.

 -r<supercluster>: Disable round-robin SFFS updating, default is on.

When disabled, only the first metadata update has the version and

supercluster increased. If supercluster is specified, the specified

supercluster index has the version set to the version of the oldest

supercluster minus one.

 -e: Ignore ECC errors, default is disabled. When disabled, when

pages have invalid ECC reads return EIO.

Page | 92

While much of this data is accessible from the Wii System Menu, it may be

preferable in some cases to have the ability to access the raw data without

interference from the console system software.

Although for some files it was possible to gain a reasonable understanding of the

internal structure and develop the automated parsing tools included in

Appendix C, the majority of files were examined manually with a hex editor and

standard UNIX tools such as grep and strings.

9.3.1 Web Browsing

As noted above, the Internet Channel does not store a detailed history of

browsing activity however by entering the Internet Channel settings menu the

user is presented with the option to remove internet cookie files, leading to the

presumption that, at the very least, records of cookie files created during the

browsing session would be stored somewhere within the NAND flash file system.

Figure 9.2 shows the process by which the location of the Internet Channel data

was determined. While the keyword ―Turing‖ was found in 6 files, a manual

inspection of the five *.app files appeared to indicate that they were unrelated

to the Internet Channel browsing records. A second search for the keyword

―Strathclyde‖, also entered during the second test browsing session, returned

only a single result. Due to this single file appearing in the results of both searches

the file <mount_point>/title/00010001/48414450/data/opera.vff was

determined to be the most likely location of stored Internet Channel data.

When examining this file with a hex editor (Figure 9.3) it soon became apparent

that certain pieces of browsing history information is in fact written to the NAND

flash storage device by the Internet Channel application.

Page | 93

Figure 9.2: Output of grep when searching for Internet Channel data

Figure 9.3: Cookie data stored by the Internet Channel

The utmc cookie segments relating to the ―Alan Turing‖ Wikipedia page can be

seen in Figure 9.3. It should also be noted that the utma segments which follow

root@analysis:~# find /nand -type f -print | xargs grep -li 'turing'

/nand/title/00010001/48414450/content/0000002c.app

/nand/title/00010001/48414450/content/00000029.app

/nand/title/00010001/48414450/content/0000002d.app

/nand/title/00010001/48414450/content/0000002f.app

/nand/title/00010001/48414450/content/0000002e.app

/nand/title/00010001/48414450/data/opera.vff

root@analysis:~#

root@analysis:~# find /nand -type f -print | xargs grep -li

'strathclyde'

/nand/title/00010001/48414450/data/opera.vff

root@analysis:~#

Page | 94

appear to show UNIX-style timestamps corresponding with the time that the

resource was last visited, as shown below.

Although manual inspection of the Internet Channel data shows that some

browsing information is stored, time constraints and the non-contiguous nature

of the file meant that it was not possible to develop a robust automated parser

for this data.

9.3.2 Internet Bookmarks / Favourites

During the manual inspection of the opera.vff file it was discovered that

details of saved ―Favourite‖ web pages are also stored alongside the internet

cookie data.

A number of previously visited web pages were saved as ―Favourites‖ during the

creation of test data, including the BBC News homepage, the record for which

is visible in its raw form in Figure 9.4.

Although it was not possible to create a robust automated parser for this data,

the fact that it can be understood reasonably well through manual inspection

may be a solution to the concern set out in Turnbull‘s paper that the saved

―Favourite‖ titles and thumbnail icons displayed by the Internet Channel may

not accurately represent the true details and content of the saved resources

(26).

peter@analysis:~$ date -d @1279371673

Sat Jul 17 14:01:13 BST 2010

peter@analysis:~$

Page | 95

Figure 9.4: Favourites data stored by the Internet Channel

9.3.3 Saved Contacts

Before messages can be exchanged through the Wii Message Board system,

the sender and recipient must undergo a mutual white listing procedure

controlled by the Wii Message Board Address Book. The Wii Message Board

Address Book maintains its records of authorised contact details in a well-

structured file which can be found at the path

<mount_point>/shared2/wc24/nwc24fl.bin.

Unlike many of the files contained within the Nintendo Wii file system, nwc24fl.bin

is reasonably well documented and understood, although its use to the wider

homebrew software community is limited (44).

Page | 96

The main structure of the file is outlined in Table 9.1 while the structure of each

specific contact, or Friend List entry, is described in Table 9.2.

Start Length (Bytes) Description

0x000 4 Magic Number: ―WcFl‖ Possibly used to identify file

0x004 4 Unknown

0x008 4 Maximum number of records stored. Seemingly always 100

0x00C 4 Actual number of records stored

0x010 48 Padding

0x040 800 Friend Codes

0x360 32000 Friend List entries. Described in Table 9.2

Table 9.1: Structure of Wii Address Book file

Start Length (Bytes) Description

0x000 4 Contact type. 0x0001 if unique console code. 0x0002 if email address

0x004 4
Confirmed contact. 0x0001 if unconfirmed. 0x0002 if confirmed.

(Email contacts are seemingly always 0x0001)

0x008 24 Contact nickname

0x020 4 Identifier of associated ―Mii‖ avatar

0x024 4 System identifier

0x028 24 Unknown

0x040 96
Contact email address or unique console code. Console codes

appear to be base64 encoded

0x0A0 160 Unknown

Table 9.2: Structure of Wii Friend List entries

With the potential to store details of up to 100 contacts, the well-structured

nature of the nwc24fl.bin file lends itself particularly well to automated

parsing. With this in mind, a simple parser was written in Python during the data

Page | 97

analysis phase and is available as wiifriends.py in the WiiTools script

collection.

9.3.4 Received Messages

Messages can be received by the console in a number of ways. Some

messages are received from authorised email addresses or other Wii consoles.

These messages appear to be cached in a mailbox file for a short period of time

before being transferred to a permanent central store elsewhere in the file

system. Other messages are created automatically by system software, for

example the automated records detailing the time spent using various features

of the device, which seem to bypass the mailbox file and are created directly in

the central Wii Message Board repository.

The mailbox used to temporarily hold received messages actually comprises of

two files:

 <mount_point>/shared2/wc24/mbox/wc24recv.ctl

 <mount_point>/shared2/wc24/mbox/wc24recv.mbx

The exact purpose of the wc24recv.ctl file is unknown, however given the

seemingly arbitrary structure of the wc24recv.mbx file, it is considered likely that

it contains a table of contents or similar for the temporary mailbox file.

The central storage repository for Wii Message Board messages is the file

<mount_point>/title/00000001/00000002/data/cdb.vff. As with

wc24recv.mbx, this structure of this file appears to constantly be subject to

change although individual messages can be extracted manually with the aid

of a hex editor.

Page | 98

The ill-defined structure of these files means that work on the development of a

robust automated parser had to be abandoned due to time constraints. It is

however possible to manually extract messages of interest, either from the raw

data provided by the mailbox files, or through ―live examination‖ of the Wii

Message Board application as described in Turnbull‘s paper (26).

9.3.5 Recently Sent Messages

Few details of sent messages are retained by the Wii Message Board

application. The fact that a message has been sent to a particular recipient is

recorded in that day‘s automated usage logging message, but no further

details are available through ―live examination‖ of the Wii Message Board.

Through manual investigation of the mailbox files it was discovered that the most

recently sent Wii Message Board message is preserved in its entirety in the file

<mount_point>/shared2/wc24/mbox/wc24send.mbx. The headers of this

message are highlighted in Figure 9.5 below. It was determined that only the

most recent sent message is preserved after an experiment involving the

dispatch of multiple messages in quick succession followed by the capture of a

NAND flash storage device image. Analysis of the mailbox files of this new image

uncovered details of only the final message of the group.

The data relating to the sender, recipient, timing and content of the message

can easily be understood by a manual inspection, and with the aid of a hex

editor, it is believed possible to extract the content of any message

attachments, which appear to be base64 encoded.

As the file wc24send.mbx appears to contain only a single message at any

given time, the difficulties relating to automated parsing were greatly reduced

Page | 99

and allowed the development of a robust parsing application for this file. The

parser is available as wiisent.py in the WiiTools script collection.

Figure 9.5: Headers of the most recently sent Wii Message Board message

Page | 100

Chapter 10 – Conclusions and Future Work

This chapter presents an overview of the achievements which have emerged

from the project, as well as a brief discussion of the major difficulties which were

encountered. The chapter ends with a number of suggestions for future work

relating to the forensic analysis of the Nintendo Wii game console.

10.1 Project Achievements

The primary aim of the project, to acquire a copy of the data held by the

Nintendo Wii‘s internal NAND flash storage device, was completed successfully.

Following from this, a number of secondary achievements were also attained

and are outlined below:

 Extensive research was conducted to formalise knowledge of the

Nintendo Wii hardware and software platform

 Demonstrating that a previously captured NAND flash file system image

can be restored, and the console reverted to an earlier state to aid in

―live examination‖ of the device

 Demonstrating that a previously captured NAND flash file system image

can be decrypted and mounted as a pseudo-Linux file system

 The extraction and interpretation of internet browsing and messaging

activity unobtainable through ―live examination‖ of the device

10.2 Difficulties Encountered

The main area where difficulties were encountered in this project was with

respect to the efforts to use an external NAND flash controller to acquire a

Page | 101

forensic image of the Nintendo Wii‘s internal NAND flash storage device. It is

likely that the stipulation that nothing be soldered to the console‘s motherboard

contributed to the failure of the experiment as this undoubtedly resulted in a

poor quality of connection between the Infectus2 package and the internal

NAND flash storage device.

This approach is widely claimed to be successful in the Nintendo Wii homebrew

and hardware hacking communities, and although these claims cannot be

independently verified, it is believed that the Infectus2 chip or similar can be

used to successfully read data from the internal NAND flash storage device.

However due to the time taken to disassemble the console and the specialist

skills and equipment required to ensure a stable electrical connection between

the components, it is thought that the ―homebrew software‖ approach is a far

more effective method of acquiring a copy of the data held by the internal

NAND flash storage device.

10.3 Future Work

While this project has produced a number of achievements there is still

significant scope for improvements and further work.

It is felt that the most obvious area is for further investigation of the feasibility of

hardware-based NAND flash device imaging, as this would allow data to be

acquired from the console, unadulterated by modifications made by the

installation of additional software.

In a similar vein, the use of the BootMii application to acquire an image of the

internal NAND flash device is akin to using a sledgehammer to crack a nut. One

proposal for future work is the development of a specialised NAND flash device

Page | 102

imaging application with a smaller footprint, and ideally, the ability to be

executed directly from an external memory card.

Aside from imaging, there is much potential for further investigation of the file

system and contents of the internal NAND flash storage device, including the

extraction of data which is usually hidden by system software, and thus

inaccessible during the conventional ―live examination‖ of the console.

Word Count = 20,706

(Excluding Title, Abstract, Acknowledgements, Table of Contents, Bibliography and Appendices)

Page | 103

Bibliography

1. Nintendo Co., Ltd. Consolidated Results for the Nine Months Ended December

2008 and 2009. [Online] 2010. [Cited: 4 August 2010.]

http://www.nintendo.co.jp/ir/pdf/2010/100128e.pdf#page=9.

2. IGN. Wii: The Total Story. [Online] 2006. [Cited: 4 August 2010.]

http://uk.wii.ign.com/launchguide/hardware1.html.

3. WiiBrew. Hardware/NAND. WiiBrew Wiki. [Online] 5 October 2009. [Cited: 4

August 2010.] http://www.wiibrew.org/wiki/Hardware/NAND#Supported_chips.

4. IBM. IBM Ships First Microchips for Nintendo's Wii Video Game System. [Online]

8 September 2006. [Cited: 4 August 2010.] http://www-

03.ibm.com/press/us/en/pressrelease/20213.wss.

5. HackMii. Keys, keys, keys. HackMii: Notes from inside your Wii. [Online] 15 April

2008. [Cited: 4 August 2010.] http://hackmii.com/2008/04/keys-keys-keys/.

6. —. IOS: history, build process. HackMii: Notes from inside your Wii. [Online] 30

June 2009. [Cited: 6 August 2010.] http://hackmii.com/2009/06/ios-history-build-

process.

7. —. Wii Menu 4.2: a lack of imagination. HackMii: Notes from inside your Wii.

[Online] 29 September 2009. [Cited: 6 August 2010.]

http://hackmii.com/2009/09/wii-menu-4-2-a-lack-of-imagination/.

8. —. System Menu 4.3 update. HackMii: Notes from inside your Wii. [Online] 24

June 2010. [Cited: 6 August 2010.] http://hackmii.com/2010/06/system-menu-4-

3-update/.

9. WiiBrew. Signing bug. WiiBrew Wiki. [Online] 19 July 2010. [Cited: 6 August

2010.] http://wiibrew.org/wiki/Signing_bug.

Page | 104

10. Opera Software. The Internet Channel: Web browsing for your Wii. Opera

Devices. [Online] 2010. [Cited: 5 August 2010.]

http://www.opera.com/devices/wii/.

11. Xbox 360: A digital forensic investigation of the hard disk drive. Xynos,

Konstantinos, et al. 3-4, 2010 : s.n., May 2010, Digital Investigation, Vol. 6, pp. 104-

111.

12. Delahunty, James. Access Xbox 360 HDD in Windows & Backup.

AfterDawn.com. [Online] 18 December 2009. [Cited: 3 August 2010.]

http://www.afterdawn.com/guides/archive/access_and_backup_xbox_360_hd

d_in_windows.cfm.

13. Gizmodo. XBox 360 Hacked - Full HD/Memory Card Read-Write. [Online] 13

February 2006. [Cited: 3 August 2010.] http://gizmodo.com/gadgets/home-

entertainment/xbox-360-hacked-full-hdmemory-card-readwrite-154405.php.

14. XFT: a forensic toolkit for the original Xbox game console. Collins, David. 2,

2009, International Journal of Electronic Security and Digital Forensics, Vol. 2, pp.

199-205.

15. Huang, Andrew. Hacking the Xbox, An Introduction to Reverse Engineering.

San Francisco, CA : No Starch Press, 2003.

16. 17 Mistakes Microsoft Made in the Xbox Security System. Steil, Michael. Berlin :

s.n., 2005. Proceedings of the 22nd Chaos Communication Congress. pp. 378-

390.

17. Xbox Forensics. Burke, Paul K and Craiger, Philip. 4, 2006, Journal of Digital

Forensic Practice, Vol. 1, pp. 275-282.

18. Xbox security issues and forensic recovery methodology (utilising Linux).

Vaughan, Chris. 3, 2004, Digital Investigation, Vol. 1, pp. 165-172.

Page | 105

19. Using a software exploit to image RAM on an embedded system. Rabaiotti, J

R and Hargreaves, C J. 3-4, May 2010, Digital Investigation, Vol. 6, pp. 95-103.

20. Sony. PS3 Firmware (v3.21) Update. PlayStation Blog. [Online] 28 March 2010.

[Cited: 19 August 2010.] http://blog.us.playstation.com/2010/03/28/ps3-

firmware-v3-21-update/.

21. Forensic Analysis of a Sony Play Station 3 Gaming Console. Conrad, Scott,

Dorn, Greg and Craiger, Philip. 2010. Proceedings of the Sixth Annual IFIP WG

11.9 International Conference.

22. van Dongen, Wouter S and van Hoof, Alain. Digital Forensics Research

Workshop Challenge 2009 Report. Digital Forensics Research Workshop. [Online]

July 2009. [Cited: 2 August 2010.]

http://www.dfrws.org/2009/challenge/vandongen_vanhoof.pdf.

23. Lee, Byungkil, Yang, Hongsuk and Yu, Hyeon. 2009 DFRWS Challenge Report.

Digital Forensics Research Workshop. [Online] July 2009. [Cited: 2 August 2010.]

http://www.dfrws.org/2009/challenge/lee_yang_yu.pdf.

24. Delahunty, James. Geohot releases PS3 exploit. AfterDawn.com. [Online] 27

January 2010. [Cited: 19 August 2010.]

http://www.afterdawn.com/news/article.cfm/2010/01/28/geohot_releases_ps3_

exploit.

25. CmdrTaco. PS3 Hacked via USB Dongle. Slashdot.org. [Online] 19 August

2010. [Cited: 19 August 2010.]

http://games.slashdot.org/story/10/08/19/139235/PS3-Hacked-via-USB-Dongle.

26. Forensic Investigation of the Nintendo Wii: A First Glance. Turnbull, Benjamin.

1, 2008, Small Scale Digital Device Forensics, Vol. 2, pp. 1-7.

27. Association of Chief Police Officers. Good Practice Guide for Computer-

Based Electronic Evidence. [Online] 2008. [Cited: 3 August 2010.]

Page | 106

http://www.7safe.com/electronic_evidence/ACPO_guidelines_computer_evide

nce_v4_web.pdf.

28. Forensic imaging of embedded systems using JTAG (boundary-scan).

Breeuwsma, Ing. M.F. 1, 2006, Digital Investigation, Vol. 3, pp. 32-42.

29. HackMii. amoxiflash. HackMii: Notes from inside your Wii. [Online] 2008.

http://hackmii.com/2008/05/amoxiflash/.

30. IEEE. IEEE Std 1149.1-2001 IEEE Standard Test Access Port and Boundary-Scan

Architecture -Description. IEEE Standards Assocition. [Online] 23 July 2001. [Cited:

8 August 2010.]

http://standards.ieee.org/reading/ieee/std_public/description/testtech/1149.1-

2001_desc.html.

31. InFeCtuS. Infectus Home Page. [Online] 15 January 2009. [Cited: 8 August

2010.] http://www.infectus.biz/index.php.

32. GameCube Linux. Whiite-linux. GameCube Linux Wiki. [Online] 20 June 2010.

[Cited: 5 August 2010.] http://www.gc-linux.org/wiki/WL:whiite-linux.

33. WiiBrew. BootMii. WiiBrew Wiki. [Online] 29 July 2010. [Cited: 7 August 2010.]

http://wiibrew.org/wiki/BootMii.

34. —. System Menu 4.3. WiiBrew Wiki. [Online] 29 July 2010. [Cited: 7 August

2010.] http://wiibrew.org/wiki/System_Menu_4.3.

35. bushing. amoxiflash.c. Google Code. [Online] 30 May 2009. [Cited: 16

August 2010.]

http://code.google.com/p/amoxiflash/source/browse/trunk/amoxiflash.c.

36. WiiBrew. Twilight Hack. Wiibrew Wiki. [Online] 28 July 2010. [Cited: 8 August

2010.] http://wiibrew.org/wiki/Twilight_Hack.

Page | 107

37. —. Bannerbomb. WiiBrew Wiki. [Online] 31 July 2010. [Cited: 8 August 2010.]

http://wiibrew.org/wiki/Bannerbomb.

38. —. Smash Stack. WiiBrew Wiki. [Online] 31 July 2010. [Cited: 8 August 2010.]

http://wiibrew.org/wiki/Smash_Stack.

39. —. Indiana Pwns. WiiBrew Wiki. [Online] 7 August 2010. [Cited: 8 August 2010.]

http://wiibrew.org/wiki/Indiana_Pwns.

40. Team Twiizers. Frequently Asked Questions. BootMii. [Online] 2010. [Cited: 14

August 2010.] http://bootmii.org/faq/.

41. WiiBrew. Mini. WiiBrew Wiki. [Online] 28 December 2009. [Cited: 11 August

2010.] http://wiibrew.org/wiki/Mini.

42. —. Betwiin. WiiBrew Wiki. [Online] 16 August 2009. [Cited: 17 August 2010.]

http://wiibrew.org/wiki/Betwiin.

43. —. wiinandfuse. WiiBrew Wiki. [Online] 12 May 2010. [Cited: 14 August 2010.]

http://wiibrew.org/wiki/Wiinandfuse.

44. —. /shared2/wc24/nwc24fl.bin. Wiibrew Wiki. [Online] 28 March 2009. [Cited:

17 August 2010.] http://wiibrew.org/wiki//shared2/wc24/nwc24fl.bin.

Page | 108

Appendix A – Console Disassembly

 Two tools are required to disassemble the Nintendo Wii console. The first is a

common small Philips screwdriver. The second is a relatively uncommon Tri-Wing

screwdriver, which was purchased over the internet at a cost of £2.70.

Other tools which may prove useful include:

 A small knife for the removal of rubber feet and stickers

 Tweezers to retrieve recessed screws

It is important to carefully label and separate components upon removal,

particularly screws as sizes vary and may only fit certain components.

The disassembly process is as follows:

1. Flip the console upside down and remove the exposed Philips screw.

Remove the battery tray from the console.

2. Remove the rubber foot closest to the battery tray slot. Also remove the

three square stickers from the bottom of the console.

3. Remove the exposed screws (2 x Tri-Wing, 3 x Philips) shown in Figure 1.

Figure 1

Page | 109

4. Place the console on its right-hand side. Remove the pair of rubber feet at

the rear of the console, and the pair of stickers at the front. Remove the

exposed screws (4 x Tri-Wing).

5. Place the console upright. Gently remove the plastic flaps which conceal

the GameCube controller ports.

6. Remove the exposed screws (3 x Philips) shown in Figure 2.

7. Carefully pull the faceplate from the front of the console. A red/black wire

plug must be disconnected from the console body before the faceplate

can be completely removed. The faceplate and red/black wire are

shown in Figure 3.

Figure 2

Page | 110

Figure 3

8. Remove the plastic back plate from the GameCube controller port area.

Remove the newly exposed screws (2 x Tri-Wing, 2 x Philips).

9. Place the console on its left-hand side. Slowly work the plastic cover off of

the console. The result is shown in Figure 4.

10. Remove the screws (4 x Philips, each appearing to have a round washer

attached) which secure the optical disc drive unit. Tweezers may be

useful for retrieving the slightly recessed screws.

11. Carefully tilt the optical disc drive unit upward toward the top of the

console. Two wires must be disconnected before the unit can be

removed. One white plug which can be gently pulled from its socket and

one ribbon strip which is release by lifting the brown catch. These plugs

are shown in Figure 5.

Page | 111

Figure 4

Figure 5

Page | 112

12. Locate and remove the pair of wireless antennae from the console base.

One is located near the bottom right corner and can be removed by

pressing against the tabs beneath and lifting the card. The second is near

the top right corner and requires the removal of 1 x Philips screw. To

remove the cards, unthread the connecting wire from the console base.

This may require the cutting of two small pieces of electrical tape.

13. At the right-hand side of the console, remove the screws (2 x Philips) which

secure the fan. Disconnect the white fan power wire and remove the fan

unit, shown in Figure 6.

Figure 6

14. Remove the screws (3 x Philips) which secure the plastic fan-flow guide to

the right-hand side of the console body.

15. Remove the screws (2 x Philips) which secure the plastic piece in the

middle of the console body, and 1 x Philips slightly to the left of the middle

plastic piece.

16. Carefully lift the plastic pieces away from the console body. The optical

disc drive unit wires and thin metal heat shielding must be carefully

manipulated in order to remove the middle plastic piece.

Page | 113

Figure 7

17. Remove the screws (3 x Philips) securing the smaller plastic piece to the

left-hand side of the console body. Care must be taken as there is a small

square nut which must also be retained. Gently manipulate the metal

heat shielding to allow the removal of the plastic piece.

18. As shown in Figure 7, the metal heat shielding is now fully exposed.

Remove the screws (11 x Philips) from around the edge of the heat

shielding which are marked by ↑, ↓, ← and → symbols.

19. Remove the screws (2 x Philips) from around the edge of the metal heat

shielding which are marked by ■ symbols.

20. Remove the screws (2 x Philips) from around the edge of the metal heat

shielding which are marked by ▲ symbols.

21. Gently lift away the three pieces of metal heat shielding from the console

body, shown in Figure 8.

Page | 114

Figure 8

22. Remove the screws (4 x Philips) which secure the large metal heatsink.

Figure 9

23. Lift the motherboard away from the console base, as shown in Figure 9.

Page | 115

Appendix B – NAND Flash Device Datasheets

The datasheets for the Samsung and Hynix NAND flash storage devices known to

be installed in the Nintendo Wii console are only available as large PDF

documents and so have been included on the CD-ROM which accompanies

this report.

The datasheets can be viewed by navigating to the /datasheets directory of

the accompanying CD-ROM.

Filename MD5 Hash Value

/datasheets/Hynix-HY27UF084G2M 600ac1669614c4d894fc6e1b4aca437c

/datasheets/Hynix-HY27UG084G2M 0541960ac99cba38c2301aeb9e20c897

/datasheets/Samsung-K9F4G08U0B 43d45990ef2fbe78601ffabdb10e59aa

Page | 116

Appendix C – The WiiTools Python Script Collection

This appendix describes a small collection of Python scripts which were

developed during the Data Analysis phase of the project. The README file is

reproduced for reference below:

WiiTools Python Script Collection

Copyright © 2010 Peter Stewart

A collection of Python scripts developed to aid in the extraction of useful

data from a Nintendo Wii NAND flash filesystem image.

DEPENDENCIES

The WiiTools scripts were developed and tested using Ubuntu Linux 10.04 and

Python 2.6.5

wiitools.py requires wiinandfuse in order to mount NAND filesystem images

wiinandfuse – http://code.google.com/p/wmb-asm/

wiifavourites.py

Attempts to extract Favourite webpage title/URL. Cannot handle the

frequent, unpredictable changes made to the „opera.vff‟ file.

Wiifriends.py

Parses the file „nwc24fl.bin‟ to extract and display the contact details

stored by the Wii Message Board system.

116isent.py

Parses the file „wc24send.mbx‟ to extract the most recent message sent

through the Wii Message Board system.

Wiitools.py

A wrapper application which uses “wiinandfuse” to mounts an image, copies

specified “interesting” files to a new directory & unmounts the image before

running the other WiiTools scripts against the newly copied files.

KNOWN ISSUES

http://code.google.com/p/wmb-asm/

Page | 117

wiifavourites.py: Unlikely to function correctly without modification

 due to unpredictable changes to „opera.vff‟

wiitools.py: MD5 verification of file copy operations will

 occasionally fail due to a „wiinandfuse‟ ECC-

 handling bug.

 It is assumed that Any script which is to be called

 by „wiitools.py‟ will first be placed on the $PATH.

CHANGELOG

20100903: 1.0 – Initial release.

The WiiTools Python script collection can be accessed by navigating to the

/wiitools directory of the accompanying CD-ROM.

Filename MD5 Hash Value

/wiitools/COPYING d32239bcb673463ab874e80d47fae504

/wiitools/README d6445f3d5cfdd49a614bbf2ce4bd8ff3

/wiitools/wiifavourites.py 87e142549bf71344aeb48e14ca38ce9d

/wiitools/wiifriends.py 04dd9c3d7c2aeccdaf3736fd2305c7c5

/wiitools/wiisent.py 423d8f193e6568ef02903006917cfa62

/wiitools/wiitools.py 14cc0289bc6f5864e45ccf66f0972a56

